Journal of Comparative Physiology A

, Volume 201, Issue 11, pp 1075–1090 | Cite as

Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus

  • Florian Rau
  • Jan Clemens
  • Victor Naumov
  • R. Matthias Hennig
  • Susanne Schreiber
Original Paper


In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells’ modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.


Auditory processing Acoustic communication Neuron models Band-pass filtering Negative feedback 



This work was funded by grants from the Federal Ministry of Education and Research, Germany (01GQ1001A, 01GQ0901, 01GQ0972, 01GQ1403) and the Deutsche Forschungsgemeinschaft (SFB618, GRK1589/1). We are grateful to Wei Wu for valuable discussion. We thank Manuel Gersbacher, Michael Reichert, Frederic Römschied, Jan-Hendrik Schleimer and Vanessa Stempel for helpful comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments conducted in this study comply with the current laws of Germany and the Principles of animal care, publication No. 86–23, revised 1985 of the National Institute of Health.


  1. Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge, pp 217–234Google Scholar
  2. Benda J, Hennig RM (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24(2):113–136CrossRefPubMedGoogle Scholar
  3. Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15(11):2523–2564CrossRefPubMedGoogle Scholar
  4. Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell UP, Ithaca, pp 227–261Google Scholar
  5. Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3(4):313–336CrossRefPubMedGoogle Scholar
  6. Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2(11):947–957CrossRefPubMedGoogle Scholar
  7. Boyan GS, Fullard JH (1988) Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth. J Comp Physiol A 164(2):251–258CrossRefPubMedGoogle Scholar
  8. Boyan GS, Williams JLD (1982) Auditory neurones in the brain of the cricket Gryllus bimaculatus (De Geer): ascending interneurones. J Insect Physiol 28(6):493–501CrossRefGoogle Scholar
  9. Bürck M, van Hemmen JL (2009) Neuronal identification of signal periodicity by balanced inhibition. Biol Cybern 100(4):261–270CrossRefPubMedGoogle Scholar
  10. Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192(2):113–121CrossRefGoogle Scholar
  11. Cariani PA (2001) Specialist and generalist strategies in sensory evolution. Artif Life 7(2):211–214CrossRefPubMedGoogle Scholar
  12. Clemens J, Wohlgemuth S, Ronacher B (2012) Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper. J Neurosci 32(29):10053–10062CrossRefPubMedGoogle Scholar
  13. Doherty JA (1985) Temperature coupling and ’trade-off’ phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J Exp Biol 114(1):17–35Google Scholar
  14. Eggermont JJ, Wang X (2011) Temporal coding in auditory cortex. In: Winer JA, Schreiner CE (eds) The Auditory Cortex. Springer, New York, pp 309–328CrossRefGoogle Scholar
  15. Eilts-Grimm K, Wiese K (1984) An electrical analogue model for frequency dependent lateral inhibition refering to the omega neurons in the auditory pathway of the cricket. Biol Cybern 51:45–52CrossRefGoogle Scholar
  16. Engel TA, Schimansky-Geier L, Herz AVM, Schreiber S, Erchova I (2008) Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100(3):1576–1589PubMedCentralCrossRefPubMedGoogle Scholar
  17. Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560(Pt 1):89–110PubMedCentralCrossRefPubMedGoogle Scholar
  18. Farris H, Mason A, Hoy RR (2004) Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units. Hear Res 193(1–2):121–133CrossRefPubMedGoogle Scholar
  19. Faulkes Z, Pollack GS (2000) Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets Teleogryllus oceanicus. J Neurophysiol 84(3):1247–1255PubMedGoogle Scholar
  20. Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10(10):421–425CrossRefGoogle Scholar
  21. Fullard JH, Ratcliffe JM, Guignion C (2005) Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. J Comp Physiol A 191(7):605–618CrossRefGoogle Scholar
  22. Gade S, Herlufsen H (1987) Use of weighting functions in DFT/FFT analysis (Part I). Brüel Kjær Technical Rev 3:1–28Google Scholar
  23. Gerstein GL, Kiang NY (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gimbarzevsky B, Miura RM, Puil E (1984) Impedance profiles of peripheral and central neurons. Can J Physiol Pharmacol 62(4):460–462CrossRefPubMedGoogle Scholar
  25. Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Mon 65(1):34–35CrossRefGoogle Scholar
  26. Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163(1):135–143CrossRefPubMedGoogle Scholar
  27. Hennig RM (2003) Acoustic feature extraction by cross-correlation in crickets? J Comp Physiol A 189(8):589–598CrossRefGoogle Scholar
  28. Hennig RM (2009) Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. J Comp Physiol A 195(10):971–987CrossRefGoogle Scholar
  29. Hennig RM, Franz A, Stumpner A (2004) Processing of auditory information in insects. Microsc Res Tech 63(6):351–374CrossRefPubMedGoogle Scholar
  30. Hildebrandt KJ (2014) Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 24(1):82–87CrossRefPubMedGoogle Scholar
  31. Horseman G, Huber F (1994) Sound localisation in crickets. I. Contralateral inhibition of an ascending auditory interneurone. J Comp Physiol A 175(4):389–398CrossRefGoogle Scholar
  32. Hoy RR (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37(10):2316–2323PubMedGoogle Scholar
  33. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMedCentralCrossRefPubMedGoogle Scholar
  34. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222CrossRefPubMedGoogle Scholar
  35. Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76(2):698–714PubMedGoogle Scholar
  36. Imaizumi K, Pollack GS (2001) Neural representation of sound amplitude by functionally different auditory receptors in crickets. J Acoust Soc Am 109(3):1247–1260CrossRefPubMedGoogle Scholar
  37. Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6–7):883–894CrossRefPubMedGoogle Scholar
  38. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258PubMedGoogle Scholar
  39. Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50(1):15–33CrossRefPubMedGoogle Scholar
  40. Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32(28):9601–9612CrossRefPubMedGoogle Scholar
  41. Kostarakos K, Hedwig B (2015) Pattern recognition in field crickets: concepts and neural evidence. J Comp Physiol A 201(1):73–85CrossRefGoogle Scholar
  42. Libersat F, Murray J, Hoy RR (1994) Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus (de Geer) and Teleogryllus oceanicus: a neuroethological analysis. J Comp Physiol A 174:485–494CrossRefPubMedGoogle Scholar
  43. Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21(9):3215–3227PubMedGoogle Scholar
  44. Marsat G, Pollack GS (2004) Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. J Neurophysiol 92(2):939–948CrossRefPubMedGoogle Scholar
  45. Marsat G, Pollack GS (2005) Effect of the temporal pattern of contralateral inhibition on sound localization cues. J Neurosci 25(26):6137–6144CrossRefPubMedGoogle Scholar
  46. Marsat G, Pollack GS (2006) A behavioral role for feature detection by sensory bursts. J Neurosci 26(41):10542–10547CrossRefPubMedGoogle Scholar
  47. Nabatiyan A, Poulet JFA, de Polavieja GG, Hedwig B (2003) Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J Neurophysiol 90(4):2484–2493CrossRefPubMedGoogle Scholar
  48. Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226(4677):992–994CrossRefPubMedGoogle Scholar
  49. Nolen TG, Hoy RR (1986) Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. J Comp Physiol A 159(4):423–439CrossRefPubMedGoogle Scholar
  50. Pollack GS, Kim JS (2013) Selective phonotaxis to high sound-pulse rate in the cricket Gryllus assimilis. J Comp Physiol A 199(4):285–293CrossRefGoogle Scholar
  51. Popov AV, Shuvalov VF, Markovich A (1976) The spectrum of the calling signals, phonotaxis, and the auditory system in the cricket Gryllus bimaculatus. Neurosci Behav Physiol 7:56–62CrossRefPubMedGoogle Scholar
  52. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16(8):1661–1687CrossRefPubMedGoogle Scholar
  53. Reiss RF (1962) A theory and simulation of rhythmic behavior due to reciprocal inhibition in small nerve nets. AIEE-IRE ’62 (Spring): Proceedings of the May 1–3, 1962, spring joint computer conference. ACM, New York, pp 171–194Google Scholar
  54. Rheinlaender J, Kalmring K, Popov AV, Rehbein H (1976) Brain projections and information processing of biologically significant sounds by two large ventral-cord neurons of Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae). J Comp Physiol A 110(3):251–269CrossRefGoogle Scholar
  55. Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89(5):2538–2554CrossRefPubMedGoogle Scholar
  56. Roeder KD (1962) The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Anim Behav 10(3–4):300–304CrossRefGoogle Scholar
  57. Rose D, Blakemore C (1974) Effects of bicuculline on functions of inhibition in visual cortex. Nature 249(455):375–377CrossRefPubMedGoogle Scholar
  58. Rössert C, Moore LE, Straka H, Glasauer S (2011) Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. J Neurosci 31(23):8359–8372CrossRefPubMedGoogle Scholar
  59. Sabourin P, Pollack GS (2010) Temporal coding by populations of auditory receptor neurons. J Neurophysiol 103(3):1614–1621CrossRefPubMedGoogle Scholar
  60. Sabourin P, Gottlieb H, Pollack GS (2008) Carrier-dependent temporal processing in an auditory interneuron. J Acoust Soc Am 123(5):2910–2917CrossRefPubMedGoogle Scholar
  61. Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155(2):171–185CrossRefGoogle Scholar
  62. Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis: I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163(5):621–631CrossRefGoogle Scholar
  63. Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51(7):557–569CrossRefGoogle Scholar
  64. Schreiber S, Erchova I, Heinemann U, Herz AVM (2004) Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol 92(1):408–415CrossRefPubMedGoogle Scholar
  65. Schreiber S, Samengo I, Herz AVM (2009) Two distinct mechanisms shape the reliability of neural responses. J Neurophysiol 101(5):2239–2251CrossRefPubMedGoogle Scholar
  66. Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory nervous system. In: Gerald M, Edelman WMC, Einar Gall W (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 337–361Google Scholar
  67. Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis 6(4):484–507CrossRefPubMedGoogle Scholar
  68. Selverston AI, Kleindienst HU, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5(5):1283–1292PubMedGoogle Scholar
  69. Sharafi N, Benda J, Lindner B (2013) Information filtering by synchronous spikes in a neural population. J Comput Neurosci 34(2):285–301PubMedCentralCrossRefPubMedGoogle Scholar
  70. Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439(7079):978–982CrossRefPubMedGoogle Scholar
  71. Sysel P, Rajmic P (2012) Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J Adv Signal Process 2012(1):1–8CrossRefGoogle Scholar
  72. Todd BS, Andrews DC (1999) The identification of peaks in physiological signals. Comput Biomed Res 32(4):322–335CrossRefPubMedGoogle Scholar
  73. Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4(3):259–284CrossRefGoogle Scholar
  74. Triblehorn JD, Ghose K, Bohn K, Moss CF, Yager DD (2008) Free-flight encounters between praying mantids (Parasphendale agrionina) and bats (Eptesicus fuscus). J Exp Biol 211(4):555–562CrossRefPubMedGoogle Scholar
  75. Tunstall DN, Pollack GS (2005) Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos. J Comp Physiol A 191(4):363–372CrossRefGoogle Scholar
  76. Urdapilleta E, Samengo I (2015) Effects of spike-triggered negative feedback on receptive-field properties. J Comput Neurosci 38(2):405–425CrossRefPubMedGoogle Scholar
  77. van Hateren JH, Laughlin SB (1990) Membrane parameters, signal transmission, and the design of a graded potential neuron. J Comp Physiol A 166(4):437–448CrossRefPubMedGoogle Scholar
  78. Webb B, Wessnitzer J, Bush S, Schul J, Buchli J, Ijspeert A (2007) Resonant neurons and bushcricket behaviour. J Comp Physiol A 193(2):285–288CrossRefGoogle Scholar
  79. Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell UP, Ithaca, pp 310–339Google Scholar
  80. Wiese K, Eilts K (1985) Evidence for matched frequency dependence of bilateral inhibition in the auditory pathway of Gryllus bimaculatus. Zool Jahrb Abt allg Zool Physiol Tiere 89(2):181–201Google Scholar
  81. Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus DeGeer). J Comp Physiol A 127(1):11–28CrossRefGoogle Scholar
  82. Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146(2):161–173CrossRefGoogle Scholar
  83. Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273(5281):1542–1544CrossRefPubMedGoogle Scholar
  84. Yager DD (2012) Predator detection and evasion by flying insects. Curr Opin Neurobiol 22(2):201–207CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Florian Rau
    • 1
  • Jan Clemens
    • 1
    • 2
  • Victor Naumov
    • 1
  • R. Matthias Hennig
    • 1
  • Susanne Schreiber
    • 2
    • 3
  1. 1.Behavioral Physiology, Department of BiologyHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Bernstein Center for Computational Neuroscience BerlinBerlinGermany
  3. 3.Institute for Theoretical Biology, Department of BiologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations