Advertisement

Journal of Comparative Physiology A

, Volume 201, Issue 7, pp 731–739 | Cite as

Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera)

  • Gabriel VillarEmail author
  • Thomas C. Baker
  • Harland M. Patch
  • Christina M. Grozinger
Original Paper

Abstract

In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system.

Keywords

Honey bee Peripheral nervous system Pheromone Receptivity Odor-mediated behavior 

Notes

Acknowledgments

We would like to thank Bernardo Niño for expert beekeeping assistance, Dr. Andrew Myrick of the Baker laboratory for assistance with electrophysiological experiments and development of custom EAG software, and undergraduate assistants Dustin Betz, Sydney Tabaac and Jacqueline Patterson for their help during the field season, as well as members of the Grozinger lab for critical reading of the manuscript. These studies were supported by an NSF CAREER grant to CMG and a grant from the Pennsylvania Pollinators Grant Program to GV.

References

  1. Allan SA, Slessor KN, Winston ML, King GGS (1987) The influence of age and task specialization on the production and perception of honey bee pheromones. J Insect Physiol 33(12):917–922CrossRefGoogle Scholar
  2. Anderson P, Hansson BS, Nilsson U, Han Q, Sjoholm M, Skals N, Anton S (2007) Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem Senses 32(5):483–491. doi: 10.1093/Chemse/Bjm017 PubMedCrossRefGoogle Scholar
  3. Anton S, Dufour MC, Gadenne C (2007) Plasticity of olfactory-guided behaviour and its neurobiological basis: lessons from moths and locusts. Entomol Exp Appl 123(1):1–11. doi: 10.1111/J.1570-7458.2007.00516.X CrossRefGoogle Scholar
  4. Baker TC, Domingue MJ, Myrick AJ (2012) Working range of stimulus flux transduction determines dendrite size and relative number of pheromone component receptor neurons in moths. Chem Senses 37:299–313. doi: 10.1093/chemse/bjr122 PubMedCrossRefGoogle Scholar
  5. Barrozo RB, Gadenne C, Anton S (2010) Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect. J Exp Biol 213(17):2933–2939. doi: 10.1242/Jeb.043430 PubMedCrossRefGoogle Scholar
  6. Barrozo RB, Jarriault D, Deisig N, Gemeno C, Monsempes C, Lucas P, Gadenne C, Anton S (2011) Mating-induced differential coding of plant odour and sex pheromone in a male moth. Eur J Neurosci 33(10):1841–1850. doi: 10.1111/J.1460-9568.2011.07678.X PubMedCrossRefGoogle Scholar
  7. Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E, Guerin PM, Iatrou K, Justice RW, Krober T, Marinotti O, Tsitoura P, Woods DF, Walter MF (2010) The anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. Plos One 5(3):e9471. doi: 10.1371/journal.pone.0009471 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bloch G, Toma DP, Robinson GE (2001) Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms 16(5):444–456PubMedCrossRefGoogle Scholar
  9. Brockmann A, Bruckner D, Crewe RM (1998) The EAG response spectra of workers and drones to queen honeybee mandibular gland components: the evolution of a social signal. Naturwissenschaften 85(6):283–285. doi: 10.1007/S001140050500 CrossRefGoogle Scholar
  10. Brockmann A, Dietz D, Spaethe J, Tautz J (2006) Beyond 9-ODA: sex pheromone communication in the European honey bee Apis mellifera L. J Chem Ecol 32(3):657–667. doi: 10.1007/s10886-005-9027-2 PubMedCrossRefGoogle Scholar
  11. Carde RT, Carde AM, Hill AS, Roelofs WL (1977) Sex-pheromone specificity as a reproductive isolating mechanism among sibling species Archips-Argyrospilus and A. Mortuanus and other sympatric tortricine moths (Lepidoptera-Tortricidae). J Chem Ecol 3(1):71–84. doi: 10.1007/Bf00988135 CrossRefGoogle Scholar
  12. Carde RT, Roelofs WL, Harrison RG, Vawter AT, Brussard PF, Mutuura A, Munroe E (1978) European corn-borer—pheromone polymorphism or sibling species. Science 199(4328):555–556. doi: 10.1126/Science.199.4328.555 PubMedCrossRefGoogle Scholar
  13. Cator LJ, George J, Blanford S, Murdock CC, Baker TC, Read AF, Thomas MB (2013) ‘Manipulation’ without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proc Biol Sci R Soc 280(1763):20130711. doi: 10.1098/rspb.2013.0711 CrossRefGoogle Scholar
  14. Claudianos C, Lim J, Young M, Yan SZ, Cristino AS, Newcomb RD, Gunasekaran N, Reinhard J (2014) Odor memories regulate olfactory receptor expression in the sensory periphery. Eur J Neurosci 39(10):1642–1654. doi: 10.1111/Ejn.12539 PubMedCrossRefGoogle Scholar
  15. Crnjar R, Yin CM, Stoffolano JG, Barbarossa IT, Liscia A, Angioy AM (1990) Influence of age on the electroantennogram response of the female blowfly (Phormia Regina) (Diptera, Calliphoridae). J Insect Physiol 36(12):917–921. doi: 10.1016/0022-1910(90)90079-U CrossRefGoogle Scholar
  16. Danty E, Arnold G, Huet JC, Huet D, Masson C, Pernollet JC (1998) Separation, characterization and sexual heterogeneity of multiple putative odorant-binding proteins in the honeybee Apis mellifera L. (Hymenoptera: Apidea). Chem Senses 23(1):83–91PubMedCrossRefGoogle Scholar
  17. Davis EE (1984) Development of lactic-acid receptor sensitivity and host-seeking behavior in newly emerged female Aedes aegypti mosquitos. J Insect Physiol 30(3):211–215. doi: 10.1016/0022-1910(84)90005-2 CrossRefGoogle Scholar
  18. Davis EE, Takahashi FT (1980) Hormonal modification of chemoreceptor sensitivity in an insect. Am Zool 20(4):936Google Scholar
  19. Gadenne C, Anton S (2000) Central processing of sex pheromone stimuli is differentially regulated by juvenile hormone in a male moth. J Insect Physiol 46(8):1195–1206. doi: 10.1016/S0022-1910(00)00040-8 PubMedCrossRefGoogle Scholar
  20. Gadenne C, Dufour MC, Anton S (2001) Transient post-mating inhibition of behavioural and central nervous responses to sex pheromone in an insect. Proc R Soc B Biol Sci 268(1476):1631–1635. doi: 10.1098/Rspb.2001.1710 CrossRefGoogle Scholar
  21. Gary NE (1962) Chemical mating attractants in the queen honey bee. Science 136(3518):773–774PubMedCrossRefGoogle Scholar
  22. George J, Blanford S, Domingue MJ, Thomas MB, Read AF, Baker TC (2011) Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. Malar J. doi: 10.1186/1475-2875-10-219 PubMedCentralPubMedGoogle Scholar
  23. Giray T, Robinson GE (1996) Common endocrine and genetic mechanisms of behavioral development in male and worker honey bees and the evolution of division of labor. Proc Natl Acad Sci USA 93(21):11718–11722PubMedCentralPubMedCrossRefGoogle Scholar
  24. Grozinger CM (in press) Honey bee pheromones. In: Graham J (ed) The hive and the honey bee. Dadant and Sons, HamiltonGoogle Scholar
  25. Grozinger CM, Robinson GE (2007) Endocrine modulation of a pheromone-responsive gene in the honey bee brain. J Comp Physiol Neuroethol Sens Neural Behav Physiol 193(4):461–470. doi: 10.1007/S00359-006-0202-X CrossRefGoogle Scholar
  26. Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003) Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci USA 100:14519–14525. doi: 10.1073/pnas.2335884100 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Grozinger CM, Fischer P, Hampton JE (2007) Uncoupling primer and releaser responses to pheromone in honey bees. Naturwissenschaften 94(5):375–379. doi: 10.1007/S00114-006-0197-8 PubMedCrossRefGoogle Scholar
  28. Guerrieri F, Gemeno C, Monsempes C, Anton S, Jacquin-Joly E, Lucas P, Devaud JM (2012) Experience-dependent modulation of antennal sensitivity and input to antennal lobes in male moths (Spodoptera littoralis) pre-exposed to sex pheromone. J Exp Biol 215(13):2334–2341. doi: 10.1242/Jeb.060988 PubMedCrossRefGoogle Scholar
  29. Hansson B (1999) Insect olfaction. Springer, BerlinCrossRefGoogle Scholar
  30. Johannes E, Kaissling KE (1976) Zahn und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphologie 83(3):227–251CrossRefGoogle Scholar
  31. Kaatz H-H, Hildebrandt H, Engels W (1992) Primer effect of queen pheromone on juvenile hormone biosynthesis in adult worker honey bees. J Comp Physiol [B] 162(7):588–592. doi: 10.1007/bf00296638 CrossRefGoogle Scholar
  32. Kaminski LA, Slessor KN, Winston ML, Hay NW, Borden JH (1990) Honeybee response to queen mandibular pheromone in laboratory bioassays. J Chem Ecol 16(3):841–850. doi: 10.1007/bf01016494 PubMedCrossRefGoogle Scholar
  33. Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542PubMedCrossRefGoogle Scholar
  34. Lemmen JK (2014) Plasticity in response to semiochemicals as part of a reproductive diapause syndrome in a long-lived moth, Caloptilia fraxinella (Lepidoptera: Gracillariidae). Dissertation, University of AlbertaGoogle Scholar
  35. Loper GM, Taylor OR, Foster LJ, Kochansky J (1996) Relative attractiveness of queen mandibular pheromone components to honey bee (Apis mellifera) drones. J Apicult Res 35(3–4):122–123Google Scholar
  36. Masson C, Arnold G (1984) Ontogeny, maturation, and plasticity of the olfactory system in the workerbee. J Insect Physiol 30:7–14CrossRefGoogle Scholar
  37. Masterman R, Ross R, Mesce K, Spivak M (2001) Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J Comp Physiol A 187(6):441–452PubMedCrossRefGoogle Scholar
  38. McQuillan HJ, Barron AB, Mercer AR (2012) Age- and behaviour-related changes in the expression of biogenic amine receptor genes in the antennae of honey bees (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(10):753–761. doi: 10.1007/S00359-012-0745-Y PubMedCrossRefGoogle Scholar
  39. Pankiw T, Winston ML, Slessor KN (1994) Variation in worker response to honey-bee (Apis mellifera L.) queen mandibular pheromone (Hymenoptera, Apidae). J Insect Behav 7(1):1–15. doi: 10.1007/Bf01989823 CrossRefGoogle Scholar
  40. Pankiw T, Huang Z-Y, Winston M, Robinson G (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J Insect Physiol 44:685–692PubMedCrossRefGoogle Scholar
  41. Park KC, Ochieng SA, Zhu JW, Baker TC (2002) Odor discrimination using insect electroantennogram responses from an insect antennal array. Chem Senses 27(4):343–352. doi: 10.1093/Chemse/27.4.343 PubMedCrossRefGoogle Scholar
  42. Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS (2010) Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 36(3):245–248. doi: 10.1007/S10886-010-9762-X PubMedCentralPubMedCrossRefGoogle Scholar
  43. Pham-Delegue MH, Trouiller J, Caillaud CM, Roger B, Masson C (1993) Effect of queen pheromone on worker bees of different ages: behavioural and electrophysiological responses. Apidologie 24(3):267–281CrossRefGoogle Scholar
  44. Robinson GE (1987) Modulation of alarm pheromone perception in the honey-bee—evidence for division-of-labor based on hormonally regulated response thresholds. J Comp Physiol A 160(5):613–619. doi: 10.1007/Bf00611934 CrossRefGoogle Scholar
  45. Sandoz JC, Pham-Delegue MH, Renou M, Wadhams LJ (2001) Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J Comp Physiol A 187(7):559–568PubMedCrossRefGoogle Scholar
  46. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452(7190):1002–1009. doi: 10.1038/Nature06850 PubMedCrossRefGoogle Scholar
  47. Shorey HH, Morin KL, Gaston LK (1968) Sex pheromones of noctuid moths.15. Timing of development of pheromone-responsiveness and other indicators of reproductive age in males of 8 species. Ann Entomol Soc Am 61(4):857–861PubMedCrossRefGoogle Scholar
  48. Slessor K, Winston M, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31:2731–2745PubMedCrossRefGoogle Scholar
  49. Spivak M, Masterman R, Ross R, Mesce KA (2003) Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol 55(3):341–354. doi: 10.1002/Neu.10219 PubMedCrossRefGoogle Scholar
  50. Sullivan JP, Jassim O, Fahrbach SE, Robinson GE (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Horm Behav 37(1):1–14PubMedCrossRefGoogle Scholar
  51. Vergoz V, McQuillan HJ, Geddes LH, Pullar K, Nicholson BJ, Paulin MG, Mercer AR (2009) Peripheral modulation of worker bee responses to queen mandibular pheromone. Proc Natl Acad Sci USA 106(49):20930–20935. doi: 10.1073/pnas.0907563106 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Vetter RS, Visscher PK (1997) Influence of age on antennal response of male honey bees, Apis mellifera, to queen mandibular pheromone and alarm pheromone component. J Chem Ecol 23(7):1867–1880CrossRefGoogle Scholar
  53. Wadhams LJ, Blight MM, Kerguelen V, Lemetayer M, Marionpoll F, Masson C, Phamdelegue MH, Woodcock CM (1994) Discrimination of oilseed rape volatiles by honey-bee—novel combined gas-chromatographic electrophysiological behavioral assay. J Chem Ecol 20(12):3221–3231. doi: 10.1007/Bf02033722 PubMedCrossRefGoogle Scholar
  54. Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM (2007) A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci 104(36):14383–14388. doi: 10.1073/pnas.0705459104 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  56. Wyatt TD (2014) Pheromones and animal behavior, 2nd edn. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gabriel Villar
    • 1
    Email author
  • Thomas C. Baker
    • 1
  • Harland M. Patch
    • 1
  • Christina M. Grozinger
    • 1
  1. 1.Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life SciencesPennsylvania State UniversityState CollegeUSA

Personalised recommendations