Advertisement

Journal of Comparative Physiology A

, Volume 201, Issue 1, pp 5–18 | Cite as

Biomechanics of hearing in katydids

  • Fernando Montealegre-Z
  • Daniel Robert
Review

Abstract

Animals have evolved a vast diversity of mechanisms to detect sounds. Auditory organs are thus used to detect intraspecific communicative signals and environmental sounds relevant to survival. To hear, terrestrial animals must convert the acoustic energy contained in the airborne sound pressure waves into neural signals. In mammals, spectral quality is assessed by the decomposition of incoming sound waves into elementary frequency components using a sophisticated cochlear system. Some insects like katydids (or bushcrickets) have evolved biophysical mechanisms for auditory processing that are remarkably equivalent to those of mammals. Located on their front legs, katydid ears are small, yet are capable of performing several of the tasks usually associated with mammalian hearing. These tasks include air-to-liquid impedance conversion, signal amplification, and frequency analysis. Impedance conversion is achieved by a lever system, a mechanism functionally analogous to the mammalian middle ear ossicles, yet morphologically distinct. In katydids, the exact mechanisms supporting frequency analysis seem diverse, yet are seen to result in dispersive wave propagation phenomenologically similar to that of cochlear systems. Phylogenetically unrelated katydids and tetrapods have evolved remarkably different structural solutions to common biophysical problems. Here, we discuss the biophysics of hearing in katydids and the variations observed across different species.

Keywords

Cochlea Insect hearing Auditory mechanics Impedance Crista acustica 

Abbreviations

AcT

Acoustic trachea

ATM

Anterior tympanal Membrane

AV

Auditory vesicle

CA

Crista acustica

HC

Hemolymph channel

LDV

Laser Doppler vibrometry

PTM

Posterior tympanal Membrane

TM

Tympanal membrane

TP

Tympanal plate

Notes

Acknowledgments

This work was sponsored by the Human Frontier Science Program (Cross Disciplinary Fellowship LT00024/2008-C to F.M.-Z.). The authors are currently sponsored by the Royal Society, and by the Leverhulme Trust (grant No. RPG-2014-284). The Colombian Ministry of Environment granted a permit for fieldwork at Gorgona National Park (decree DTS0-G-31 11/07). We would like to thank two anonymous referees for discussions and comments on earlier versions of the manuscript. We also thank Ben Chivers for proof-reading the final version on English grammar. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Ashmore J (2008) Cochlear outer hair cell motility. Physiol Rev 88(1):173–210. doi: 10.1152/physrev.00044.2006 PubMedCrossRefGoogle Scholar
  2. Autrum H (1940) Über Lautäusserungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta ital.; und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352. doi: 10.1007/BF00342439 CrossRefGoogle Scholar
  3. Autrum H (1963) Anatomy and physiology of sound receptors in invertebrates. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier, Amsterdam, pp 412–433Google Scholar
  4. Bailey WJ (1990) The ear of the bushcriket. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae. Biology, systematics and evolution. Crawford House Press, Bathurst, pp 217–247Google Scholar
  5. Bailey WJ, Stephen RO (1978) Directionality and auditory slit function: theory of hearing in bushcrickets. Science 201(4356):633–634. doi: 10.1126/science.201.4356.633 PubMedCrossRefGoogle Scholar
  6. Bailey WJ, Stephen RO, Yeoh P (1988) Signal transmission in noisy environments: auditory masking in the tympanic nerve of the bushcricket Metaballus litus (Orthoptera: Tettigoniinae). J Acoust Soc Am 83(5):1828–1832. doi: 10.1121/1.396517 PubMedCrossRefGoogle Scholar
  7. Ball E, Field LH (1981) Structure of the auditory system of the weta Hemideina crassidens (Blanchard, 1851) (Orthoptera, Ensifera, Gryllacridoidea, Stenopelmatidae). Cell Tissue Res 217(2):321–344. doi: 10.1007/bf00233584 PubMedCrossRefGoogle Scholar
  8. Bangert M, Kalmring K, Sickmann T, Stephen R, Jatho M, Lakes-Harlan R (1998) Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae) I. The role of the tympana. Hear Res 115(1–2):27–38. doi: 10.1016/S0378-5955(97)00177-9 PubMedCrossRefGoogle Scholar
  9. Belwood JJ, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238:64–67. doi: 10.1126/science.238.4823.64 PubMedCrossRefGoogle Scholar
  10. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  11. Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat—demonstration of an acoustic fovea. Hear Res 3(1):27–43. doi: 10.1016/0378-5955(80)90006-4 PubMedCrossRefGoogle Scholar
  12. Faure PA, Hoy RR (2000) The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae). J Comp Physiol A 186(2):129–142. doi: 10.1007/s003590050013 PubMedCrossRefGoogle Scholar
  13. Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–230. doi: 10.1016/S0065-2806(08)60013-2 CrossRefGoogle Scholar
  14. Field LH, Hill KG, Ball EE (1980) Physiological and biophysical properties of the auditory system of the New Zealand weta Hemideina crassidens (Blanchard, 1851) (Ensifera: Stenopelmatidae). J Comp Physiol 141(1):31–37. doi: 10.1007/bf00611875 CrossRefGoogle Scholar
  15. Heinrich R, Jatho M, Kalmring K (1993) Acoustic transmission characteristics of the tympanal tracheas of bushcrickets (Tettigoniidae). II. Comparative studies of the tracheas of 7 species. J Acoust Soc Am 93(6):3481–3489. doi: 10.1121/1.405678 CrossRefGoogle Scholar
  16. Heller K-G (1995) Acoustic signalling in Palaeotropical bush-crickets (Orthoptera, Tettigonioidea, Pseudophyllidae): does predation pressure by eavesdropping enemies differ in the Palaeotropics and Neotropics. J Zool (Lond) 237:469–485CrossRefGoogle Scholar
  17. Hill KG, Oldfield BP (1981) Auditory function in tettigoniidae (Orthoptera:Ensifera). J Comp Physiol 142(2):169–180. doi: 10.1007/bf00605735 CrossRefGoogle Scholar
  18. Hirtenlehner S, Römer H, Schmidt AD (2014) Out of phase: relevance of the medial septum for directional hearing and phonotaxis in the natural habitat of field crickets. J Comp Physiol A 200(2):139–148. doi: 10.1007/s00359-013-0869-8 CrossRefGoogle Scholar
  19. Hoffmann E, Jatho M (1995) The acoustic trachea of Tettigoniids as an exponential horn-theoretical calculations and bioacoustical measurements. J Acoust Soc Am 98(4):1845–1851. doi: 10.1121/1.413371 CrossRefGoogle Scholar
  20. Hummel J, Kössl M, Nowotny M (2011) Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output. J Exp Biol 214(21):3596–3604. doi: 10.1242/jeb.054445 PubMedCrossRefGoogle Scholar
  21. Isobe K, Motokawa K (1955) Functional structure of the retinal fovea and maxwell’s spot. Nature 175(4450):306–307. doi: 10.1038/175306a0 PubMedCrossRefGoogle Scholar
  22. Klowden MJ (2008) Physiological systems in Insects. 2nd ed. Elsevier Inc.Google Scholar
  23. Lang AB, Kalko EKV, Römer H, Bockholdt C, Dechmann DKN (2006) Activity levels of bats and katydids in relation to the lunar cycle. Oecologia 146(4):659–666. doi: 10.1007/s00442-005-0131-3 PubMedCrossRefGoogle Scholar
  24. Lewis DB (1974) The physiology of the tettigoniid ear. II. The response characteristics of the ear to differential inputs: lesion and blocking experiments. J Exp Biol 60:839–851PubMedGoogle Scholar
  25. Lomas K, Montealegre-Z F, Parsons S, Field LH, Robert D (2011) Mechanical filtering for narrow-band hearing in the weta. J Exp Biol 214(5):778–785. doi: 10.1242/jeb.050187 PubMedCrossRefGoogle Scholar
  26. Lomas KF, Greenwood DR, Windmill JFC, Jackson JC, Corfield J, Parsons S (2012) Discovery of a lipid synthesising organ in the auditory system of an Insect. PLoS One 7(12):e51486. doi: 10.1371/journal.pone.0051486 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Mason AC, Morris GK, Wall P (1991) High ultrasonic hearing and tympanal slit function in rainforest katydids. Naturwissenschaften 78(8):365–367. doi: 10.1007/BF01131611 CrossRefGoogle Scholar
  28. Mhatre N, Montealegre-Z F, Balakrishnan R, Robert D (2009) Mechanical response of the tympanal membranes of the tree cricket Oecanthus henryi. J Comp Physiol A 195(5):453–462. doi: 10.1007/s00359-009-0423-x CrossRefGoogle Scholar
  29. Michelsen A (1971) The physiology of the locust ear. J Comp Physiol A 71(1):102–128. doi: 10.1007/BF01245156 Google Scholar
  30. Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I: tympanal vibrations in bushcriekets (Tettigoniidae) studied with Laser vibrometry. J Comp Physiol A 123(3):193–203. doi: 10.1007/BF00656872 CrossRefGoogle Scholar
  31. Michelsen A, Larsen ON (2008) Pressure difference receiving ears. Bioinspir Biomim 3 (1). doi: 10.1088/1748-3182/3/1/011001
  32. Michelsen A, Heller KG, Stumpner A, Rohrseitz K (1994a) A New biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol A 175(2):145–151. doi: 10.1007/BF00215110 PubMedCrossRefGoogle Scholar
  33. Michelsen A, Popov AV, Lewis B (1994b) Physics of directional hearing in the cricket Gryllus bimaculatus. J Comp Physiol A 175(2):153–164. doi: 10.1007/BF00215111 CrossRefGoogle Scholar
  34. Montealegre-Z F (2009) Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): generator morphology constrains signal parameters. J Evol Biol 22:355–366. doi: 10.1111/j.1420-9101.2008.01652.x CrossRefGoogle Scholar
  35. Montealegre-Z F (2014) Biofísica- El refinado oído del saltamontes: un caso de evolución convergente con el oído de los mamíferos. Investigación y Ciencia (Spanish edition of Scientific American) 452:50–56Google Scholar
  36. Montealegre-Z F, Morris GK (2004) The spiny devil katydids, Panacanthus Walker (Orthoptera : Tettigoniidae): an evolutionary study of acoustic behaviour and morphological traits. Syst Entomol 29(1):21–57. doi: 10.1111/j.1365-3113.2004.00223.x CrossRefGoogle Scholar
  37. Montealegre-Z F, Postles M (2010) Resonant sound production in Copiphora gorgonensis (Tettigoniidae: Copiphorini), an endemic species from Parque Nacional Natural Gorgona Colombia. J Orthoptera Res 19(2):347–355. doi: 10.1665/034.019.0223 CrossRefGoogle Scholar
  38. Montealegre-Z F, Jonsson T, Robson-Brown KA, Postles M, Robert D (2012) Convergent evolution between insect and mammalian audition. Science 338(6109):968–971. doi: 10.1126/science.1225271 PubMedCrossRefGoogle Scholar
  39. Morris GK (1999) Song in arthropods. In: Davey KG (ed) Encyclopedia of reproduction, vol 4. Academic Press, San Diego, pp 508–517Google Scholar
  40. Morris GK (2008) Size and carrier in the bog katydid, Metrioptera sphagnorum (Orthoptera: Ensifera, Tettigoniidae). J Orthoptera Res 17(2):333–342. doi: 10.1665/1082-6467-17.2.333 CrossRefGoogle Scholar
  41. Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera, Tettigoniidae). J Zool (Lond) 233:129–163. doi: 10.1111/j.1469-7998.1994.tb05266.x CrossRefGoogle Scholar
  42. Mugleston JD, Song H, Whiting MF (2013) A century of paraphyly: A molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. Mol Phylogenet Evol 69(3):1120–1134. doi: 10.1016/j.ympev.2013.07.014 PubMedCrossRefGoogle Scholar
  43. Nowotny M, Hummel J, Weber M, Moeckel D, Koessl M (2010) Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum. J Comp Physiol A 196(12):939–945. doi: 10.1007/s00359-010-0577-6 CrossRefGoogle Scholar
  44. Oldfield BP (1982) Tonotopic organization of auditory receptors in Tettigoniidae (Orthoptera, Ensifera). J Comp Physiol 147(4):461–469. doi: 10.1007/BF00612011 CrossRefGoogle Scholar
  45. Oldfield BP (1985) The role of the tympanal membrane in the tuning of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Exp Biol 116:493–497Google Scholar
  46. Palghat Udayashankar A, Kössl M, Nowotny M (2012) Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets. PLoS One 7(2):e31008. doi: 10.1371/journal.pone.0031008 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Palghat Udayashankar A, Kössl M, Nowotny M (2014) Lateralization of travelling wave response in the hearing organ of bushcrickets. Plos One 9(1):e86090PubMedCentralPubMedCrossRefGoogle Scholar
  48. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, White LE (2013). Neuroscience. 5rd edition, Chapter 13. Sinauer Associates, SunderlandGoogle Scholar
  49. Rajaraman K, Mhatre N, Jain M, Postles M, Balakrishnan R, Robert D (2013) Low-pass filters and differential tympanal tuning in a paleotropical bushcricket with an unusually low frequency call. J Exp Biol 216:777–787. doi: 10.1242/jeb.078352 PubMedCrossRefGoogle Scholar
  50. Ramsier MA, Cunningham AJ, Moritz GL, Finneran JJ, Williams CV, Ong PS, Gursky-Doyen SL, Dominy NJ (2012) Primate communication in the pure ultrasound. Biol Lett 8(4):508–511. doi: 10.1098/rsbl.2011.1149 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Ratcliffe JM, Fullard JH, Arthur BJ, Hoy RR (2011) Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. Proc R Soc B-Biol Sci 278(1704):364–370. doi: 10.1098/rspb.2010.1488 CrossRefGoogle Scholar
  52. Robert D (2005) Directional hearing in insects. In: Popper AN, Fay RR (eds) Sound source localization, vol 25. Springer-Verlag New York, pp 6–35. doi:  10.1007/0-387-28863-5_2
  53. Robinson DJ, Hall MJ (2002) Sound signalling in Orthoptera. Adv Insect Physiol 29:151–278. doi: 10.1016/S0065-2806(02)29003-7 CrossRefGoogle Scholar
  54. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81(3):1305–1352PubMedCentralPubMedGoogle Scholar
  55. Römer H (1983) Tonotopic organization of the auditory neuropil in the bushcricket Tettigonia viridissima. Nature 306(5938):60–62. doi: 10.1038/306060a0 CrossRefGoogle Scholar
  56. Rössler W, Hubschen A, Schul J, Kalmring K (1994) Functional morphology of bushcricket ears: comparison between two species belonging to the Phaneropterinae and Decticinae (Insecta, Ensifera). Zoomorphology 114(1):39–46. doi: 10.1007/BF00574913 CrossRefGoogle Scholar
  57. Sarria-S FA, Morris GK, Windmill JFC, Jackson J, Montealegre-Z F (2014) Shrinking wings for ultrasonic pitch production: hyperintense ultra-short-wavelength calls in a new genus of neotropical katydids (Orthoptera: Tettigoniidae). Plos One 9 (6). doi: e9870810.1371/journal.pone.0098708Google Scholar
  58. Schiolten P, Larsen ON, Michelsen A (1981) Mechanical time resolution in some insect ears. I. Impulse responses and time constants. J Comp Physiol 143:289–295. doi: 10.1007/BF00611164 CrossRefGoogle Scholar
  59. Schnitzler H-U, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 197(5):541–559. doi: 10.1007/s00359-010-0569-6 CrossRefGoogle Scholar
  60. Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats-evidence for an acoustic fovea. J Comp Physiol 132(1):47–54. doi: 10.1007/BF00617731 CrossRefGoogle Scholar
  61. Schumacher R (1973) Morphologische Untersuchungen der tibialen Tympanalorgane von neun einheimischen Laubheuschrecken-Arten (Orthoptera, Tettigonioidea). Z Morphol Tiere 75:267–282. doi: 10.1007/BF00288474 CrossRefGoogle Scholar
  62. Schumacher R (1975) Scanning-Electron-Microscope description of the tibial tympanal organ of the Tettigonioidea (Orthoptera, Ensifera). Z Vergl Physiol 81:209–219. doi: 10.1007/BF00278370 Google Scholar
  63. Shen JX (1993) A peripheral mechanism for auditory directionality in the bushcricket Gampsocleis gratiosa acoustic tracheal system. J Acoust Soc Am 94(3):1211–1217. doi: 10.1121/1.408174 CrossRefGoogle Scholar
  64. Stephen RO, Bailey WJ (1982) Bioacoustics of the ear of the bushcricket Hemisaga (Sagenae). J Acoust Soc Am 72(1):13–25. doi: 10.1121/1.387997 CrossRefGoogle Scholar
  65. Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99 (AUG):279-314Google Scholar
  66. Stolting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294(2):377–386. doi: 10.1007/s004410051187 PubMedCrossRefGoogle Scholar
  67. Stumpner A, Nowotny M (2014) Neural processing in the bush-cricket auditory pathway. In: Hedwig B (ed) Insect hearing and acoustic communication, vol 1. Animal signals and communication. Springer Berlin Heidelberg, pp 143–166. doi:  10.1007/978-3-642-40462-7_9
  68. Vater M, Kössl M (2011) Comparative aspects of cochlear functional organization in mammals. Hear Res 273(1–2):89–99. doi: 10.1016/j.heares.2010.05.018 PubMedCrossRefGoogle Scholar
  69. Vogel S (2013) Comparative biomechanics: life’s physical world, 2nd edn. Princeton University Press, New JerseyGoogle Scholar
  70. von Békésy G (1960) Experiments in hearing. McGraw-Hill, New YorkGoogle Scholar
  71. Vondran T, Apel KH, Schmitz H (1995) The infrared receptor of Melanophila acuminata De Geer (Coleoptera: Buprestidae): ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue Cell 27(6):645–658. doi: 10.1016/S0040-8166(05)80020-5 PubMedCrossRefGoogle Scholar
  72. Windmill JFC, Göpfert MC, Robert D (2005) Tympanal travelling waves in migratory locusts. J Exp Biol 208(1):157–168. doi: 10.1242/jeb.01332 PubMedCrossRefGoogle Scholar
  73. Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63(6):315–337. doi: 10.1002/jemt.20051 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Life Sciences, Joseph Banks Laboratories Green LaneUniversity of LincolnLincolnUK
  2. 2.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations