Journal of Comparative Physiology A

, Volume 201, Issue 1, pp 19–37 | Cite as

Active amplification in insect ears: mechanics, models and molecules

  • Natasha Mhatre


Active amplification in auditory systems is a unique and sophisticated mechanism that expends energy in amplifying the mechanical input to the auditory system, to increase its sensitivity and acuity. Although known for decades from vertebrates, active auditory amplification was only discovered in insects relatively recently. It was first discovered from two dipterans, mosquitoes and flies, who hear with their light and compliant antennae; only recently has it been observed in the stiffer and heavier tympanal ears of an orthopteran. The discovery of active amplification in two distinct insect lineages with independently evolved ears, suggests that the trait may be ancestral, and other insects may possess it as well. This opens up extensive research possibilities in the field of acoustic communication, not just in auditory biophysics, but also in behaviour and neurobiology. The scope of this review is to establish benchmarks for identifying the presence of active amplification in an auditory system and to review the evidence we currently have from different insect ears. I also review some of the models that have been posited to explain the mechanism, both from vertebrates and insects and then review the current mechanical, neurobiological and genetic evidence for each of these models.


Acoustic communication Active hearing Insect hearing Active auditory amplification Active mechanosensation 



Best frequency


Compound action potentials




Inner hair cell


Johnston’s organ


Outer hair cell




No mechanoreceptor potential C


Stimulus receiver structure


Touch insensitive larvae B


Transient receptor potential



The author would like to acknowledge the support of the UK India Education and Research Initiative, a Biotechnology and Biological Sciences Research Council Grant and a Marie Curie fellowship. I would also like to gratefully acknowledge the Wissenschaftskolleg zu Berlin for a College for Life Sciences fellowship (2013/2014) during which this review was partly written. I would also like to thank the editors of this special issue for inviting me to write this review and for their patience while I did. I would also like to thank two anonymous referees whose comments and suggestions greatly improved this manuscript.


  1. Ajdari A, Prost J, Jülicher F (1997) Modeling molecular motors. Rev Mod Phys 69:1269–1281Google Scholar
  2. Albert JT, Nadrowski B, Göpfert MC (2007) Mechanical signatures of transducer gating in the Drosophila ear. Curr Biol 17:1000–1006. doi: 10.1016/j.cub.2007.05.004 PubMedGoogle Scholar
  3. Arthur BJ, Wyttenbach Ra, Harrington LC, Hoy RR (2010) Neural responses to one- and two-tone stimuli in the hearing organ of the dengue vector mosquito. J Exp Biol 213:1376–1385. doi: 10.1242/jeb.033357 PubMedCentralPubMedGoogle Scholar
  4. Ashmore J, Avan P, Brownell WE et al (2010) The remarkable cochlear amplifier. Hear Res 266:1–17. doi: 10.1016/j.heares.2010.05.001 PubMedGoogle Scholar
  5. Avitabile D, Homer M, Champneys AR et al (2010) Mathematical modelling of the active hearing process in mosquitoes. J R Soc Interface 7:105–122. doi: 10.1098/rsif.2009.0091 PubMedCentralPubMedGoogle Scholar
  6. Avitabile D, Homer M, Jackson J et al (2011) Modelling the active hearing process in mosquitoes. AIP Conf Proc 1403:447–452. doi: 10.1063/1.3658129 Google Scholar
  7. Barral J, Martin P (2012) Phantom tones and suppressive masking by active nonlinear oscillation of the hair-cell bundle. Proc Natl Acad Sci 109:E1344–E1351. doi: 10.1073/pnas.1202426109 PubMedCentralPubMedGoogle Scholar
  8. Belyantseva IA, Adler H, Curi R et al (2000) Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 20:RC116PubMedGoogle Scholar
  9. Beurg M, Tan X, Fettiplace R (2013) A prestin motor in chicken auditory hair cells: active force generation in a nonmammalian species. Neuron 79:69–81. doi: 10.1016/j.neuron.2013.05.018 PubMedCentralPubMedGoogle Scholar
  10. Bialek W (1987) Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem 16:455–478. doi: 10.1146/
  11. Boekhoff-Falk G (2005) Hearing in Drosophila: development of Johnston’s organ and emerging parallels to vertebrate ear development. Dev Dyn 232:550–558. doi: 10.1002/dvdy.20207 PubMedGoogle Scholar
  12. Camalet S, Jülicher F, Prost J (1999) Self-organized beating and swimming of internally driven filaments. Phys Rev Lett 82:1590–1593. doi: 10.1103/PhysRevLett.82.1590 Google Scholar
  13. Camalet S, Duke T, Jülicher F, Prost J (2000) Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97:3183–3188PubMedCentralPubMedGoogle Scholar
  14. Cator LJ, Arthur BJ, Harrington LC, Hoy RR (2009) Harmonic convergence in the love songs of the dengue vector mosquito. Science 323(5917):1077–1079. doi: 10.1126/science.1166541 PubMedCentralPubMedGoogle Scholar
  15. Champneys AR, Avitabile D, Homer M et al (2011) The mechanics of hearing: a comparative case study in bio-mathematical modelling. ANZIAM J 52:225–249. doi: 10.1017/S1446181111000733 Google Scholar
  16. Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc Natl Acad Sci 95:15321–15326PubMedCentralPubMedGoogle Scholar
  17. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521. doi: 10.1038/nrn2149 PubMedGoogle Scholar
  18. Coro F, Kossl M (1998) Distortion-product otoacoustic emissions from the tympanic organ in two noctuoid moths. J Comp Physiol A 183:525–531Google Scholar
  19. Duke TAJ, Jülicher F (2007) Critical oscillators as active elements in hearing. In: Manley GA, Fay RR, Popper AN (eds) Active processes and otoacoustic emissions in hearing. Springer, New York, pp 63–92Google Scholar
  20. Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988PubMedGoogle Scholar
  21. Effertz T, Wiek R, Göpfert MC (2011) NompC TRP channel is essential for Drosophila sound receptor function. Curr Biol 21:592–597. doi: 10.1016/j.cub.2011.02.048 PubMedGoogle Scholar
  22. Effertz T, Nadrowski B, Piepenbrock D et al (2012) Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nat Neurosci 15:1198–1200. doi: 10.1038/nn.3175 PubMedGoogle Scholar
  23. Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7:19–29. doi: 10.1038/nrn1828 PubMedGoogle Scholar
  24. Fischer S, Samietz J, Wäckers F, Dorn S (2001) Interaction of vibrational and visual cues in parasitoid host location. J Comp Physiol A 187:785–791. doi: 10.1007/s00359-001-0249-7 PubMedGoogle Scholar
  25. Gerhardt HC, Huber F (2002) Acoustic communications in insects and anurans. The University of Chicago press, Chicago and LondonGoogle Scholar
  26. Gibson G, Russell I (2006) Flying in tune: sexual recognition in mosquitoes. Curr Biol 16(13):1311–1316. doi: 10.1016/j.cub.2006.05.053 PubMedGoogle Scholar
  27. Gillespie PG, Cyr JL (2004) Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 66:521–545. doi: 10.1146/annurev.physiol.66.032102.112842 PubMedGoogle Scholar
  28. Gong ZF, Son WS, Chung YD et al (2004) Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066PubMedGoogle Scholar
  29. Göpfert MC (2008) Amplification and feedback in invertebrates. In: Allan IB, Akimichi K, Gordon MS et al (eds) Senses: a comprehensive reference. Academic press, New York, pp 293–299Google Scholar
  30. Göpfert MC, Robert D (2001) Active auditory mechanics in mosquitoes. Proc R Soc B 268:333–339. doi: 10.1098/rspb.2000.1376 PubMedCentralPubMedGoogle Scholar
  31. Göpfert MC, Robert D (2002) The mechanical basis of Drosophila audition. J Exp Biol 205:1199–1208PubMedGoogle Scholar
  32. Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100:5514–5519. doi: 10.1073/pnas.0737564100 PubMedCentralPubMedGoogle Scholar
  33. Göpfert MC, Robert D (2007) Active processes in insect hearing. In: Manley GA, Fay RR, Popper AN (eds) Active processes and otoacoustic emissions in hearing. Springer, New York, pp 191–209Google Scholar
  34. Göpfert MC, Briegel H, Robert D (1999) Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J Exp Biol 202:2727–2738PubMedGoogle Scholar
  35. Göpfert MC, Humphris ADL, Albert JT et al (2005) Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci USA 102:325–330. doi: 10.1073/pnas.0405741102 PubMedCentralPubMedGoogle Scholar
  36. Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000. doi: 10.1038/nn1735 PubMedGoogle Scholar
  37. Gray EG (1960) The fine structure of the insect ear. Phil Trans Roy Soc B 243:75–94Google Scholar
  38. He DZZ, Lovas S, Ai Y et al (2014) Prestin at year 14: progress and prospect. Hear Res 311:25–35. doi: 10.1016/j.heares.2013.12.002 PubMedGoogle Scholar
  39. Holt JR, Gillespie SKH, Provance DW et al (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381. doi: 10.1016/S0092-8674(02)00629-3 PubMedGoogle Scholar
  40. Homma K, Dallos P (2011a) Dissecting the electromechanical coupling mechanism of the motor-protein prestin. Commun Integr Biol 4:450–453PubMedCentralPubMedGoogle Scholar
  41. Homma K, Dallos P (2011b) Evidence that prestin has at least two voltage- dependent steps. J Biol Chem 286:2297–2307PubMedCentralPubMedGoogle Scholar
  42. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404. doi: 10.1038/341397a0 Google Scholar
  43. Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545. doi: 10.1016/j.neuron.2008.07.012 PubMedCentralPubMedGoogle Scholar
  44. Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772. doi: 10.1073/pnas.97.22.11765 PubMedCentralPubMedGoogle Scholar
  45. Hudspeth AJ, Jülicher F, Martin P (2010) A critique of the critical cochlea: Hopf—a bifurcation—is better than none. J Neurophysiol 104:1219–1229. doi: 10.1152/jn.00437.2010 PubMedCentralPubMedGoogle Scholar
  46. Humphries S (2013) A physical explanation of the temperature dependence of physiological processes mediated by cilia and flagella. Proc Natl Acad Sci USA 110:14693–14698. doi: 10.1073/pnas.1300891110 PubMedCentralPubMedGoogle Scholar
  47. Jackson JC, Robert D (2006) Nonlinear auditory mechanism enhances female sounds for male mosquitoes. Proc Natl Acad Sci USA 103:16734–16739. doi: 10.1073/pnas.0606319103 PubMedCentralPubMedGoogle Scholar
  48. Jarman AP, Grell EH, Ackerman L et al (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400. doi: 10.1038/369398a0 PubMedGoogle Scholar
  49. Jarman AP, Sun Y, Jan LY, Jan YN (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121:2019–2030PubMedGoogle Scholar
  50. Jülicher F, Andor D, Duke T (2001) Physical basis of two-tone interference in hearing. Proc Natl Acad Sci 98:9080–9085. doi: 10.1073/pnas.151257898 PubMedCentralPubMedGoogle Scholar
  51. Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499:317–356. doi: 10.1002/cne.21075 PubMedGoogle Scholar
  52. Kamikouchi A, Inagaki HK, Effertz T et al (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458:165–171. doi: 10.1038/nature07810 PubMedGoogle Scholar
  53. Kavlie RG, Albert JT (2014) Transduction and amplification in the ear : insights from insects. In: Köppl C, Manley GA, Popper A, Fay RR (eds) Insights from comparative hearing research. Springer, New York, pp 13–35. doi: 10.1007/2506 Google Scholar
  54. Kavlie RG, Kernan MJ, Eberl DF (2010) Hearing in Drosophila requires TilB, a conserved protein associated with ciliary motility. Genetics 185:177–188. doi: 10.1534/genetics.110.114009 PubMedCentralPubMedGoogle Scholar
  55. Kavlie RG, Fritz JL, Nies F et al (2014) Prestin is an anion transporter dispensable for mechanical feedback amplification in Drosophila hearing. J Comp Physiol A. doi: 10.1007/s00359-014-0960-9
  56. Kernan MJ (2007) Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch Eur J Physiol 454:703–720. doi: 10.1007/s00424-007-0263-x Google Scholar
  57. Kernan M, Cowan D, Zuker C (1994) Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12:1195–1206. doi: 10.1016/0896-6273(94)90437-5 PubMedGoogle Scholar
  58. Kim J, Chung YD, Park D-Y et al (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84. doi: 10.1038/nature01733 PubMedGoogle Scholar
  59. Kindt KS, Finch G, Nicolson T (2012) Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell 23:329–341. doi: 10.1016/j.devcel.2012.05.022 PubMedCentralPubMedGoogle Scholar
  60. Kössl M, Boyan GS (1998) Acoustic distortion products from the ear of a grasshopper. J Acoust Soc Am 104:326–335Google Scholar
  61. Larsen ON, Kleindienst HU, Michelsen A (1989) Biophysical aspects of sound reception. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca and London, pp 364–390Google Scholar
  62. Lee E, Sivan-Loukianova E, Eberl DF, Kernan MJ (2008) An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 18:1899–1906. doi: 10.1016/j.cub.2008.11.020 PubMedCentralPubMedGoogle Scholar
  63. Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(= NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5:e11012. doi: 10.1371/journal.pone.0011012 PubMedCentralPubMedGoogle Scholar
  64. Lehnert BP, Baker AE, Gaudry Q et al (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128. doi: 10.1016/j.neuron.2012.11.030 PubMedGoogle Scholar
  65. LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415. doi: 10.1016/j.neuron.2005.10.017 PubMedGoogle Scholar
  66. Liang X, Madrid J, Ga R et al (2013) A NompC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763. doi: 10.1016/j.cub.2013.03.065 PubMedGoogle Scholar
  67. Liberman MC, Gao J, He DZZ et al (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304PubMedGoogle Scholar
  68. Lillywhite PG (1977) Single photon signals and transduction in an insect eye. J Comp Physiol A 122:189–200. doi: 10.1007/BF00611889 Google Scholar
  69. Malkin R, Mcdonagh TR, Mhatre N et al (2014) Energy localization and frequency analysis in the locust ear. J R Soc Interface 11:20130857PubMedGoogle Scholar
  70. Mammano F, Ashmore J (1993) Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365:838–841PubMedGoogle Scholar
  71. Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743. doi: 10.1073/pnas.97.22.11736 PubMedCentralPubMedGoogle Scholar
  72. Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549PubMedGoogle Scholar
  73. Manley GA, Ladher R (2008) Phylogeny and evolution of ciliated mechanoreceptor cells. In: Allan IB, Akimichi K, Gordon MS et al (eds) Senses: a comprehensive reference. Academic press, New York, pp 1–34Google Scholar
  74. Maoiléidigh DO, Jülicher F (2010) The interplay between active hair bundle motility and electromotility in the cochlea. J Acoust Soc Am 128:1175–1190. doi: 10.1121/1.3463804 Google Scholar
  75. Martin P, Hudspeth AJ (2001) Compressive nonlinearity in the hair bundle’s active response to mechanical stimulation. Proc Natl Acad Sci USA 98:14386–14391. doi: 10.1073/pnas.251530498 PubMedCentralPubMedGoogle Scholar
  76. Martin P, Mehta aD, Hudspeth aJ (2000) Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc Natl Acad Sci USA 97:12026–12031. doi: 10.1073/pnas.210389497 PubMedCentralPubMedGoogle Scholar
  77. Martin P, Hudspeth AJ, Jülicher F (2001) Comparison of a hair bundle’ s spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. Proc Natl Acad Sci 98:14380–14385PubMedCentralPubMedGoogle Scholar
  78. Mhatre N, Robert D (2013) A tympanal insect ear exploits a critical oscillator for active amplification and tuning. Curr Biol 23:1952–1957. doi: 10.1016/j.cub.2013.08.028 PubMedCentralPubMedGoogle Scholar
  79. Michelsen A, Löhe G (1995) Tuned directionality in cricket ears. Nature 375:639Google Scholar
  80. Michelsen A, Popov AV, Lewis B (1994) Physics of directional hearing in the cricket Gryllus bimaculatus. J Comp Physiol A 175:153–164Google Scholar
  81. Miles RN, Robert D, Hoy RR (1995) Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. J Acoust Soc Am 98:3059–3070PubMedGoogle Scholar
  82. Möckel D, Seyfarth E-A, Kössl M (2007) The generation of DPOAEs in the locust ear is contingent upon the sensory neurons. J Comp Physiol A 193:871–879. doi: 10.1007/s00359-007-0239-5 Google Scholar
  83. Möckel D, Seyfarth E-A, Kössl M (2011) Otoacoustic emissions in bushcricket ears: general characteristics and the influence of the neuroactive insecticide pymetrozine. J Comp Physiol A 197:193–202. doi: 10.1007/s00359-010-0599-0 Google Scholar
  84. Möckel D, Kössl M, Lang J, Nowotny M (2012) Temperature dependence of distortion-product otoacoustic emissions in tympanal organs of locusts. J Exp Biol 215:3309–3316. doi: 10.1242/jeb.074377 PubMedGoogle Scholar
  85. Moir HM, Jackson JC, Windmill JFC (2011) No evidence for DPOAEs in the mechanical motion of the locust tympanum. J Exp Biol 214:3165–3172. doi: 10.1242/jeb.056465 PubMedGoogle Scholar
  86. Montealegre-Z F, Jonsson T, Robson-Brown Ka et al (2012) Convergent evolution between insect and mammalian audition. Science 338:968–971. doi: 10.1126/science.1225271 PubMedGoogle Scholar
  87. Nadrowski B, Göpfert MC (2009a) Level-dependent auditory tuning. Commun Integr. Biol 2(1):7–10. doi: 10.1016/ Google Scholar
  88. Nadrowski B, Göpfert MC (2009b) Modeling auditory transducer dynamics. Curr Opin Otolaryngol Head Neck Surg 17:400–406. doi: 10.1097/MOO.0b013e3283303443 PubMedGoogle Scholar
  89. Nadrowski B, Martin P, Jülicher F (2004) Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. Proc Natl Acad Sci USA 101:12195–12200. doi: 10.1073/pnas.0403020101 PubMedCentralPubMedGoogle Scholar
  90. Nadrowski B, Albert JT, Göpfert MC (2008) Transducer-based force generation explains active process in Drosophila hearing. Curr Biol 18:1365–1372. doi: 10.1016/j.cub.2008.07.095 PubMedGoogle Scholar
  91. Nelson ME, MacIver MA (2006) Sensory acquisition in active sensing systems. J Comp Physiol A 192:573–586. doi: 10.1007/s00359-006-0099-4 Google Scholar
  92. Nobili R, Mammano F, Ashmore J (1998) How well do we understand the cochlea? Trends Neurosci 21:159–167PubMedGoogle Scholar
  93. Paton JA, Capranica RR, Dragsten PR, Webb WW (1977) Physical basis for auditory frequency analysis in field crickets (Gryllidae). J Comp Physiol A 119:221–240. doi: 10.1007/BF00656635 Google Scholar
  94. Peng AW, Ricci AJ (2011) Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? Hear Res 273:109–122. doi: 10.1016/j.heares.2010.03.094 PubMedCentralPubMedGoogle Scholar
  95. Riabinina O, Dai M, Duke T, Albert JTT (2011) Active process mediates species-specific tuning of Drosophila ears. Curr Biol 21:658–664. doi: 10.1016/j.cub.2011.03.001 PubMedGoogle Scholar
  96. Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301Google Scholar
  97. Robert D (2009) Insect bioacoustics : mosquitoes make an effort to listen to each other. Curr Biol 19:R446–R449. doi: 10.1016/j.cub.2009.04.021 PubMedGoogle Scholar
  98. Robert D, Miles RN, Hoy RR (1996) Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea. J Comp Physiol A 179:29–44PubMedGoogle Scholar
  99. Robert D, Miles RN, Hoy RR (1998) Tympanal mechanics in the parasitoid fly Ormia ochracea: intertympanal coupling during mechanical vibration. J Comp Physiol A 183:443–452Google Scholar
  100. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352PubMedCentralPubMedGoogle Scholar
  101. Rossler W, Hubschen A, Schul J, Kalmring K (1994) Functional morphology of bushcricket ears: comparison between two species belonging to the Phaneropterinae and Decticinae (Insecta, Ensifera). Zoomorphology 114:39–46Google Scholar
  102. Salazar VL, Krahe R, Lewis JE (2013) The energetics of electric organ discharge generation in gymnotiform weakly electric fish. J Exp Biol 216:2459–2468. doi: 10.1242/jeb.082735 PubMedGoogle Scholar
  103. Santos-Sacchi J (2003) New tunes from Corti’s organ: the outer hair cell boogie rules. Curr Opin Neurobiol 13:459–468. doi: 10.1016/S0959-4388(03)00100-4 PubMedGoogle Scholar
  104. Senthilan PR, Piepenbrock D, Ovezmyradov G et al (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042–1054. doi: 10.1016/j.cell.2012.06.043 PubMedGoogle Scholar
  105. Siegel J (2008) Otoacoustic emissions. In: Allan IB, Akimichi K, Gordon MS et al (eds) Senses: a comprehensive reference. Academic press, New York, pp 237–261Google Scholar
  106. Speakman JR, Anderson ME, Racey PA (1989) The energy cost of echolocation in pipistrelle bats (Pipistrellus pipistrellus). J Comp Physiol A 165:679–685Google Scholar
  107. Stoop R, Kern A, Göpfert M et al (2006) A generalization of the van-der-Pol oscillator underlies active signal amplification in Drosophila hearing. Eur Biophys J 35:511–516. doi: 10.1007/s00249-006-0059-5 PubMedGoogle Scholar
  108. Szalai R, Champneys A, Homer M et al (2013) Comparison of nonlinear mammalian cochlear-partition models. J Acoust Soc Am 133:323–336PubMedGoogle Scholar
  109. Todi SV, Sharma Y, Eberl DF (2004) Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc Res Tech 63:388–399. doi: 10.1002/jemt.20053 PubMedCentralPubMedGoogle Scholar
  110. Trautwein MD, Wiegmann BM, Beutel R et al (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57:449–468. doi: 10.1146/annurev-ento-120710-100538 PubMedGoogle Scholar
  111. Walker RG, Hudspeth aJ (1996) Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog’s sacculus. Proc Natl Acad Sci USA 93:2203–2207. doi: 10.1073/pnas.93.5.2203 PubMedCentralPubMedGoogle Scholar
  112. Warren B, Gibson G, Russell IJ (2009) Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Curr Biol 19:485–491. doi: 10.1016/j.cub.2009.01.059 PubMedGoogle Scholar
  113. Warren B, Lukashkin AN, Russell IJ (2010) The dynein-tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito. Proc Biol Sci 277:1761–1769. doi: 10.1098/rspb.2009.2355 PubMedCentralPubMedGoogle Scholar
  114. Weber T, Goepfert M, Winter H et al (2003) Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects. Proc Natl Acad Sci USA 100:7690–7695PubMedCentralPubMedGoogle Scholar
  115. Windmill JFC, Göpfert MC, Robert D (2005) Tympanal travelling waves in migratory locusts. J Exp Biol 208:157–168. doi: 10.1242/jeb.01332 PubMedGoogle Scholar
  116. Windmill JFC, Jackson JC, Tuck EJ, Robert D (2006) Keeping up with bats: dynamic auditory tuning in a moth. Curr Biol 16:2418–2423. doi: 10.1016/j.cub.2006.09.066 PubMedGoogle Scholar
  117. Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337. doi: 10.1002/jemt.20051 PubMedGoogle Scholar
  118. Yorozu S, Wong S, Fischer BJ et al (2009) Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458:201–204PubMedCentralPubMedGoogle Scholar
  119. Young D (1977) Structure and function of the auditory system of the cicada, Cystosoma saundersii. J Comp Physiol A. 45:23–45Google Scholar
  120. Young D, Ball E (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker); I. Adult structure. Z Zellforsch Mikrosk Anat 147:293–312PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of BristolBristolUK
  2. 2.Department of Biological Sciences, Integrative Behaviour and Neuroscience GroupUniversity of Toronto ScarboroughScarboroughCanada

Personalised recommendations