Sensory feedback in cockroach locomotion: current knowledge and open questions

Abstract

The American cockroach, Periplaneta americana, provides a successful model for the study of legged locomotion. Sensory regulation and the relative importance of sensory feedback vs. central control in animal locomotion are key aspects in our understanding of locomotive behavior. Here we introduce the cockroach model and describe the basic characteristics of the neural generation and control of walking and running in this insect. We further provide a brief overview of some recent studies, including mathematical modeling, which have contributed to our knowledge of sensory control in cockroach locomotion. We focus on two sensory mechanisms and sense organs, those providing information related to loading and unloading of the body and the legs, and leg-movement-related sensory receptors, and present evidence for the instrumental role of these sensory signals in inter-leg locomotion control. We conclude by identifying important open questions and indicate future perspectives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92(1):42–51

    PubMed  Article  Google Scholar 

  2. Altman J (1982) The role of sensory inputs in insect flight motor pattern generation. Trends Neurosci 5:257–258

    Article  Google Scholar 

  3. Arshavsky YI (2003) Cellular and network properties in the functioning of the nervous system: from central pattern generators to cognition. Brain Res Rev 41:229–267

    PubMed  Article  Google Scholar 

  4. Bender JA, Pollack AJ, Ritzmann RE (2010) Neural activity in the central complex of the insect brain is linked to locomotor changes. Curr Biol 20(10):921–926

    CAS  PubMed  Article  Google Scholar 

  5. Bergman SJ, Pearson KG (1968) Inhibition in cockroach muscle. J Physiol 195(2):22P–23P

    CAS  PubMed  Google Scholar 

  6. Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29(9):2972–2983

    CAS  PubMed  Article  Google Scholar 

  7. Brodfuehrer PD, Fourtner CR (1983) Reflexes evoked by the femoral and coxal chordotonal organs in the cockroach, Periplaneta americana. Comp Biochem Physiol A 74:169–174

    Article  Google Scholar 

  8. Bucher D (2009) Central pattern generators. Ency Neurosci, pp 691–700

  9. Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93(3):1127–1135

    PubMed  Article  Google Scholar 

  10. Büschges A, Schmitz J, Bässler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J Exp Biol 198:435–456

    Google Scholar 

  11. Büschges A, Akay T, Gabriel J, Schmidt J (2007) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 57:162–171

    PubMed  Article  Google Scholar 

  12. Büschges A, Scholz H, El Manira A (2011) New moves in motor control. Curr Biol 21(13):R513–R524

    PubMed  Article  Google Scholar 

  13. Chiel HJ, Ting LH, Ekeberg O, Hartmann MJ (2009) The brain in its body: motor control and sensing in a biomechanical context. J Neurosci 29:12807–12814

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  14. Cocatre-Zilgien JH, Delcomyn F (1990) Fast axon activity and the motor pattern in cockroach legs during swimming. Physiol Entomol 15(4):385–392

    Article  Google Scholar 

  15. Cocatre-Zilgien JH, Delcomyn F (1999) Modeling stress and strain in an insect leg for simulation of campaniform sensilla responses to external forces. Biol Cyber 81:149–160

    Article  Google Scholar 

  16. Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P (2015) Intersegmental coupling and recovery from perturbations in freely-running cockroaches. J Exp Biol (in press)

  17. Cowan NJ, Fortune ES (2007) The critical role of locomotion mechanics in decoding sensory systems. J Neurosci 27:1123–1128

    CAS  PubMed  Article  Google Scholar 

  18. Delcomyn F (1971) The locomotion of the cockroach Periplaneta americana. J Exp Biol 54(2):443–452

    Google Scholar 

  19. Delcomyn F (1987) Motor activity during searching and walking movements of cockroach legs. J Exp Biol 133:111–120

    CAS  PubMed  Google Scholar 

  20. Delcomyn F (1991a) Perturbation of the motor system in freely walking cockroaches. I. Rear leg amputation and the timing of motor activity in leg muscles. J Exp Biol 156:483–502

    CAS  PubMed  Google Scholar 

  21. Delcomyn F (1991b) Perturbation of the motor system in freely walking cockroaches. II. The timing of motor activity in leg muscles after amputation of a middle leg. J Exp Biol 156:503–517

    CAS  PubMed  Google Scholar 

  22. Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106

    CAS  PubMed  Article  Google Scholar 

  23. Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–228

    Article  Google Scholar 

  24. French AS, Sanders EJ (1979) The mechanism of sensory transduction in the sensilla of the trochanteral hair plate of the cockroach, Periplaneta americana. Cell Tissue Res 198:159–174

    CAS  PubMed  Article  Google Scholar 

  25. Friesen WO, Cang J (2001) Sensory and central mechanisms control inter-segmental coordination. Curr Opin Neurobiol 11(6):678–683

    CAS  PubMed  Article  Google Scholar 

  26. Fuchs E, Holmes P, Kiemel T, Ayali A (2011) Inter-segmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Front Neural Circ 4:125

    Google Scholar 

  27. Fuchs E, Holmes P, David I, Ayali A (2012) Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach. J Exp Biol 215(11):1884–1891

    PubMed  Article  Google Scholar 

  28. Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202:3325–3332

    CAS  PubMed  Google Scholar 

  29. Full RJ, Tu MS (1991) Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J Exp Biol 156(1):215–231

    CAS  PubMed  Google Scholar 

  30. Gao Y, Chen WH, Lu Z (2011) Kinematics analysis and experiment of a cockroach-like robot. J Shanghai Jiaotong Univ (Science) 16:71–77

    Article  Google Scholar 

  31. Ghigliazza R, Holmes P (2004) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3(4):671–700

    Article  Google Scholar 

  32. Gorelkin VS, SeverinaI Yu, Isavnina IL (2013) Functional role of leg receptors of the cockroach Periplaneta americana in the system of walking control. J Evol Biochem Physiol 49(3):348–352 (Original Russian Text © V.S. Gorelkin, I.Yu. Severina, I.L. Isavnina, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol.48, No. 6,pp. 568–572.)

    CAS  Article  Google Scholar 

  33. Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Article  Google Scholar 

  34. Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex integration. Physiol Rev 55:247–304

    CAS  PubMed  Google Scholar 

  35. Guo P, Ritzmann RE (2013) Neural activity in the central complex of the cockroach brain is linked to turning behaviors. J Exp Biol 216(6):992–1002

    PubMed  Article  Google Scholar 

  36. Guthrie DM, Tindall AR (1968) The biology of the cockroach. Edward Arnold, London

    Google Scholar 

  37. Holmes P, Full RJ, Koditschek DE, Guckenheimer J (2006) The dynamics of legged locomotion: models, analyses and challenges. SIAM Rev 48:207–304

    Article  Google Scholar 

  38. Hooper SL (2000) Central pattern generators. Curr Biol 10(5):R176–R179

    PubMed  Article  Google Scholar 

  39. Hughes GM (1952) The co-ordination of insect movements: I The walking movements of insects. J Exp Biol 29:267–285

    Google Scholar 

  40. Iles JF, Pearson KG (1969) Central patterning of motoneuronal activity in the cockroach. J Physiol 204(2):54P–55P

    CAS  PubMed  Google Scholar 

  41. Iles JF, Pearson KG (1971) Coxal depressor muscles of the cockroach and the role of peripheral inhibition. J Exp Biol 55:131–164

    Google Scholar 

  42. Jindrich D, Full RJ (2002) Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol 205:2803–2823

    PubMed  Google Scholar 

  43. Kaliyamoorthy S, Zill SN, Quinn RD (2005) Force sensors in hexapod locomotion. Int J Robotics Res 24:563–574

    Article  Google Scholar 

  44. Kingsley DA, Quinn RD, Ritzmann RE (2006) A cockroach inspired robot with artificial muscles. In: Intelligent robots and systems, 2006 IEEE/RSJ international conference on (pp 1837–1842). IEEE

  45. Krämer K, Markl H (1978) Flight inhibition on ground contact in the American cockroach, Periplaneta americana. I. Contact receptors and a model for their central connections. J Insect Physiol 24:577–586

    Article  Google Scholar 

  46. Kubow TM, Full RJ (1999) The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos Trans R Soc Lond B 354:849–861

    Article  Google Scholar 

  47. Kukillaya R, Proctor J, Holmes P (2009) Neuromechanical models for insect locomotion: stability, maneuverability, and proprioceptive feedback. Chaos 19(2):026107

    CAS  PubMed  Article  Google Scholar 

  48. Larsen GS, Frazier SF, Fish SE, Zill SN (1995) Effects of load inversion in cockroach walking. J Comp Physiol A 176:229–238

    CAS  PubMed  Article  Google Scholar 

  49. Ludwar BCh, Goritz ML, Schmidt J (2005) Intersegmental coordination of walking movements in stick insects. J Neurophysiol 93:1255–1265

    PubMed  Article  Google Scholar 

  50. Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    CAS  PubMed  Article  Google Scholar 

  51. Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  52. Mendes CS, Bartos I, Akay T, Márka S, Mann RS (2013) Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. ELife 2:e00231

    PubMed Central  PubMed  Google Scholar 

  53. Mu L, Ritzmann RE (2008a) Interaction between descending input and thoracic reflexes for joint coordination in cockroach: I Descending influence on thoracic sensory reflexes. J Comp Physiol A 194(3):283–298

    Article  Google Scholar 

  54. Mu L, Ritzmann RE (2008b) Interaction between descending input and thoracic reflexes for joint coordination in cockroach. II Comparative studies on tethered turning and searching. J Comp Physiol A 194(3):299–312

    Article  Google Scholar 

  55. Noah JA, Quimby L, Frazier SF, Zill SN (2001) Force receptors in cockroach walking reconsidered, discharges of proximal tibial campaniform sensilla when body load is altered. J Comp Physiol A 187:769–784

    CAS  PubMed  Article  Google Scholar 

  56. Noah JA, Quimby L, Frazier SF, Zill SN (2004) Sensing the effect of body load in legs, responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J Comp Physiol A 190:201–215

    CAS  Article  Google Scholar 

  57. Okada R, Ikeda J, Mizunami M (1999) Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies. J Comp Physiol A 185(2):115–129

    Article  Google Scholar 

  58. Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56(1):173–193

    Google Scholar 

  59. Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Ann Rev Neurosci 16:265–297

    CAS  PubMed  Article  Google Scholar 

  60. Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    PubMed  Article  Google Scholar 

  61. Pearson KG, Bergman SJ (1969) Common inhibitory motoneurones in insects. J Exp Biol 50(2):445–471

    CAS  PubMed  Google Scholar 

  62. Pearson KG, Iles JF (1970) Discharge patterns of coxal levator and depressor motoneurones of the cockroach Periplaneta americana. J Exp Biol 52(1):139–165

    CAS  PubMed  Google Scholar 

  63. Pearson KG, Iles JF (1973) Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J Exp Biol 58:725–744

    Google Scholar 

  64. Pearson KG, Wong RK, Fourtner CR (1976) Connexions between hair-plate afferents and motoneurones in the cockroach leg. J Exp Biol 64(1):251–266

    CAS  PubMed  Google Scholar 

  65. Pearson KG, Ekeberg Ö, Büschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29(11):625–631

    CAS  PubMed  Article  Google Scholar 

  66. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093

    CAS  PubMed  Article  Google Scholar 

  67. Pringle JWS (1940) Reflex mechanism of the insect leg. J Exp Biol 17:8–17

    Google Scholar 

  68. Proctor J, Holmes P (2010) Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion. Biol Cybern 102:513–531

    CAS  PubMed  Article  Google Scholar 

  69. Proctor J, Kukillaya RP, Holmes P (2010) A phase-reduced neuro-mechanical model for insect locomotion: feedforward stability and proprioceptive feedback. Philos Trans R Soc Lond A368:5087–5104

    Article  Google Scholar 

  70. Puhl JG, Mesce KA (2010) Keeping it together: mechanisms of inter-segmental coordination for a flexible locomotor behavior. J Neurosci 30(6):2373–2383

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  71. Reingold SC, Camhi JM (1977) A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach. J Insect Physiol 23:1407–1420

    Article  Google Scholar 

  72. Revzen S, Burden SA, Moore TY, Mongeau JM, Full RJ (2013) Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches. Biol Cybern 107(2):179–200

    PubMed  Article  Google Scholar 

  73. Ridgel AL, Ritzmann RE (2005) Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach. J Comp Physiol A 191:559–573

  74. Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (1999) Active signaling of leg loading and unloading in the cockroach. J Neurophysiol 81:1432–1437

    CAS  PubMed  Google Scholar 

  75. Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (2000) Encoding of forces by cockroach tibial campaniform sensilla, implications in dynamic control of posture and locomotion. J Comp Physiol A 186:359–374

    CAS  PubMed  Article  Google Scholar 

  76. Ridgel AL, Frazier SF, Zill SN (2001) Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches. J Comp Physiol A 187:405–420

    CAS  PubMed  Article  Google Scholar 

  77. Rillich J, Stevenson PA, Pflueger H-J (2013) Flight and walking in locusts: cholinergic co-activation, temporal coupling and its modulation by biogenic amines. PLoS One 8(5):e62899

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  78. Ritzmann R, Zill SN (2013) Neuroethology of insect walking. Scholarpedia 8(9):30879

    Article  Google Scholar 

  79. Schmitt J, Holmes P (2000) Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory. Biol Cybern 83:501–515

    CAS  PubMed  Article  Google Scholar 

  80. Schmitt J, Garcia M, Razo C, Holmes P, Full RJ (2002) Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects. Biol Cybern 86:343–353

    CAS  PubMed  Article  Google Scholar 

  81. Schroer RT, Boggess MJ, Bachmann RJ, Quinn RD, Ritzmann RE (2004) Comparing cockroach and whegs robot body motions. In: Robotics and automation, proceedings ICRA’04. 2004 IEEE international conference on robotics and automation (Vol. 4, pp. 3288–3293). IEEE

  82. Seipel J, Holmes P, Full RJ (2004) Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motion. Biol Cybern 91:76–90

    PubMed  Article  Google Scholar 

  83. Skinner FK, Mulloney B (1998) Inter-segmental coordination in invertebrates and vertebrates. Curr Opin Neurobiol 8:725–732

    CAS  PubMed  Article  Google Scholar 

  84. Spence AJ, Revzen S, Seipel J, Mullens C, Full RJ (2010) Insects running on elastic surfaces. J Exp Biol 213:1907–1920

    PubMed  Article  Google Scholar 

  85. Sponberg S, Libby T, Mullens CH, Full RJ (2011) Shifts in a single muscle’s control potential of body dynamics are determined by mechanical feedback. Philos Trans R Soc Lond B 366:1606–1620

    Article  Google Scholar 

  86. Tang TP, Macmillan DL (1986) The effects of sensory manipulation upon interlimb coordination during fast walking in the cockroach. J Exp Biol 125:107–117

    Google Scholar 

  87. Tytell E, Holmes P, Cohen A (2011) Spikes alone do not behavior make: why neuroscience needs biomechanics. Curr Opin Neurobiol 21:816–822

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  88. Watson JT, Ritzmann RE, Pollack AJ (2002) Control of climbing behavior in the cockroach, Blaberus discoidalis. II Motor activities associated with joint movement. J Comp Physiol A 188:55–69

    Article  Google Scholar 

  89. Wilson DM (1961) The central nervous control of flight in a locust. J Exp Biol 38:471–490

    Google Scholar 

  90. Wong RK, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J Exp Biol 64(1):233–249

    CAS  PubMed  Google Scholar 

  91. Yu X, Friesen WO (2004) Entrainment of leech swimming activity by the ventral stretch receptor. J Comp Physiol A 190:939–949

    Google Scholar 

  92. Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog Neurobiol 58:185–205

    CAS  PubMed  Article  Google Scholar 

  93. Zill SN (1986) A model of pattern generation of cockroach walking reconsidered. J Neurobiol 17:317–328

    CAS  PubMed  Article  Google Scholar 

  94. Zill SN, Moran DT (1981a) The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle regenerated forces in the American cockroach Periplaneta americana. J Exp Biol 91:1–24

    Google Scholar 

  95. Zill SN, Moran DT (1981b) The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach Periplaneta americana. J Exp Biol 94:57–75

    Google Scholar 

  96. Zill SN, Ridgel AL, DiCaprio RA, Frazier SF (1999) Load signaling by cockroach trochanteral campaniform sensilla. Brain Res 822:271–275

    CAS  PubMed  Article  Google Scholar 

  97. Zill SN, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33:273–286

    PubMed  Article  Google Scholar 

  98. Zill SN, Keller BR, Duke ER (2009) Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. J Neurophysiol 101:2297–2304

    PubMed  Article  Google Scholar 

  99. Zill SN, Keller BR, Chaudhry S, Duke ER, Neff D, Quinn R, Flannigan C (2010) Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches. J Comp Physiol A 196(6):407–420

    Article  Google Scholar 

  100. Zill SN, Schmitz J, Chaudhry S, Büschges A (2012) Force encoding in stick insect legs delineates a reference frame for motor control. J Neurophysiol 108(5):1453–1472

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by BSF grant No. 2011059 (AA and PH), and by NSF-CRCNS DMS-1430077 and Princeton University under the J. Insley Blair Pyne Fund (EC-F and PH).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ayali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayali, A., Couzin-Fuchs, E., David, I. et al. Sensory feedback in cockroach locomotion: current knowledge and open questions. J Comp Physiol A 201, 841–850 (2015). https://doi.org/10.1007/s00359-014-0968-1

Download citation

Keywords

  • Periplaneta americana
  • Proprioception
  • Campaniform sensilla
  • Chordotonal organ
  • Feedback control