Computational themes of peripheral processing in the auditory pathway of insects

Abstract

Hearing in insects serves to gain information in the context of mate finding, predator avoidance or host localization. For these goals, the auditory pathways of insects represent the computational substrate for object recognition and localization. Before these higher level computations can be executed in more central parts of the nervous system, the signals need to be preprocessed in the auditory periphery. Here, we review peripheral preprocessing along four computational themes rather than discussing specific physiological mechanisms: (1) control of sensitivity by adaptation, (2) recoding of amplitude modulations of an acoustic signal into a labeled-line code (3) frequency processing and (4) conditioning for binaural processing. Along these lines, we review evidence for canonical computations carried out in the peripheral auditory pathway and show that despite the vast diversity of insect hearing, signal processing is governed by common computational motifs and principles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Autrum HJ (1942) Schallempfang bei mensch und tier. Naturwissenschaften 5:69–85

    Article  Google Scholar 

  2. Baden T, Hedwig B (2006) Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone. Dev Neurobiol 67(1):68–80

    Google Scholar 

  3. Barlow HB (2001) Redundancy reduction revisited. Network 12(3):241–253

    CAS  PubMed  Article  Google Scholar 

  4. Benda J, Hennig RM (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24:113–136

    PubMed  Article  Google Scholar 

  5. Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15:2523–2564

    PubMed  Article  Google Scholar 

  6. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  7. Clemens J, Hennig RM (2013) Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 35:75–85

    PubMed  Article  Google Scholar 

  8. Clemens J, Ronacher B (2013) Feature extraction and integration underlying perceptual decision making during courtship behavior. J Neurosci 33(29):12136–12145

    CAS  PubMed  Article  Google Scholar 

  9. Clemens J, Weschke G, Vogel A, Ronacher B (2010) Intensity properties of auditory neurons compared to the statistics of relevant natural signals in grasshoppers. J Comp Physiol A 196:285–297

    Article  Google Scholar 

  10. Clemens J, Kutzki O, Ronacher B, Schreiber S, Wohlgemuth S (2011) Efficient transformation of an auditory population code in a small sensory system. Proc Natl Acad Sci USA 108:13812–13817

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Clemens J, Wohlgemuth S, Ronacher B (2012) Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper. J Neurosci 32:10053–10062

    CAS  PubMed  Article  Google Scholar 

  12. Creutzig F, Wohlgemuth S, Stumpner A, Bena J, Ronacher B, Herz AVM (2009) Time-scale invariant representation of acoustic communication signals by a bursting interneuron. J Neurosci 29:2575–2580

    CAS  PubMed  Article  Google Scholar 

  13. Creutzig F, Benda J, Wohlgemuth S, Stumpner A, Ronacher B, Herz AVM (2010) Timescale-invariant pattern recognition by feedforward inhibition and parallel signal processing. Neural Comput 22:1493–1510

    PubMed  Article  Google Scholar 

  14. deWeese MR, Wehr M, Zador AM (2003) Binary spiking in auditory cortex. J Neurosci 23(7940):7949

    Google Scholar 

  15. Dobler S, Stumpner A, Heller K-G (1994) Sex-specific spectral tuning for the partner’s song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:303–310

    Google Scholar 

  16. Eyherabide HG, Rokem A, Herz AVM, Samengo I (2008) Burst firing is a neural code in an insect auditory system. Front Comput Neurosci 2:1–17

    Article  Google Scholar 

  17. Fisch K, Schwalger T, Lindner B, Herz AV, Benda J (2012) Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. J Neurosci 32(48):17332–17344

    CAS  PubMed  Article  Google Scholar 

  18. Fonseca PJ, Münch D, Hennig RM (2000) How cicadas interpret acoustic signals. Nature 405:297–298

    CAS  Google Scholar 

  19. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago

    Google Scholar 

  20. Gogala M (1995) Songs of four cicada species from Thailand. Bioacoustics 6:101–116

    Article  Google Scholar 

  21. Gollisch T, Herz AVM (2004) Input-driven components of spike-frequency adaptation can be unmasked in vivo. J Neurosci 24:7435–7444

    CAS  PubMed  Article  Google Scholar 

  22. Hennig RM, Weber T (1997) Filtering of temporal parameters of the calling song by cricket females of two closely related species: a behavioral analysis. J Comp Physiol A 180:621–630

    Article  Google Scholar 

  23. Hennig RM, Franz A, Stumpner A (2004) Processing of auditory information in insects. Microsc Res Tech 63:351–374

    CAS  PubMed  Article  Google Scholar 

  24. Hildebrandt KJ (2014) Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 24:82–87

    CAS  PubMed  Article  Google Scholar 

  25. Hildebrandt KJ, Benda J, Hennig RM (2009) The origin of adaptation in the auditory pathway of locusts is specific to cell type and function. J Neurosci 29:2626–2636

    CAS  PubMed  Article  Google Scholar 

  26. Hildebrandt KJ, Benda J, Hennig RM (2011) Multiple arithmetic operations in a single neuron: the recruitment of adaptation processes in the cricket auditory pathway depends on sensory context. J Neurosci 31:14142–14150

    CAS  PubMed  Article  Google Scholar 

  27. Hill KG (1974) Carrier frequency as a factor in phonotactic behavior of female crickets (Teleogryllus commodus). J Comp Physiol 93:7–18

    Article  Google Scholar 

  28. Hoy RR (1989) Startle, categorical response, and attention in acoustic behavior of insects. Ann Rev Neurosci 12:355–375

    CAS  PubMed  Article  Google Scholar 

  29. Imaizumi K, Pollack GS (1999) Neural coding of sound frequency by cricket auditory receptors. J Neurosci 19:1508–1516

    CAS  PubMed  Google Scholar 

  30. Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocerca gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285

    Article  Google Scholar 

  31. Klump GM, Shelter MD (1984) Acoustic behaviour of birds and mammals in the predator context; I. Factors affecting the structure of alarm signals. II. The functional significance and evolution of alarm signals. Z Tierpsychol 66:189–226

    Article  Google Scholar 

  32. Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32(28):9601–9612

    CAS  PubMed  Article  Google Scholar 

  33. Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13–24

    CAS  PubMed  Article  Google Scholar 

  34. Lampe U, Schmoll T, Franzke A, Reinhold K (2012) Staying tuned: grasshoppers from noisy roadside habitats produce courtship signals with elevated frequency components. Function Ecol 26:1348–1354

    Article  Google Scholar 

  35. Laughlin SB (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch C: Biosci 36:910–912

    CAS  Google Scholar 

  36. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895

    CAS  PubMed  Article  Google Scholar 

  37. Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AVM (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21:3215–3227

    CAS  PubMed  Google Scholar 

  38. Machens CK, Schütze H, Franz A, Stemmler MB, Ronacher B, Herz AVM (2003) Auditory receptor neurons preserve characteristic differences between conspecific communication signals. Nature Neurosci 6:341–342

    CAS  PubMed  Article  Google Scholar 

  39. Machens CK, Gollisch T, Kolesnikova O, Herz AVM (2005) Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron 47:447–456

    CAS  PubMed  Article  Google Scholar 

  40. Marsat G, Pollack GS (2005) Effect of the temporal pattern of contralateral inhibition on sound localization cues. J Neurosci 25:6137–6144

    CAS  PubMed  Article  Google Scholar 

  41. Marsat G, Pollack GS (2006) A behavioral role for feature detection by sensory bursts. J Neurosci 26(41):10542–10547

    CAS  PubMed  Article  Google Scholar 

  42. Marsat G, Pollack GS (2010) The structure and size of sensory bursts encode stimulus information but only size affects behavior. J Comp Physiol A 196:315–320

    Article  Google Scholar 

  43. Marshall DC, Hill KBR (2009) Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLoS One 4(1):e4185. doi:10.1371/journal.pone.0004185

    PubMed Central  PubMed  Article  Google Scholar 

  44. Michelsen A (1998) Biophysics of sound localization in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin, NewYork, pp 18–62

    Google Scholar 

  45. Miles RN, Robert D, Hoy RR (1995) Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. J Acoust Soc Am 98:3059–3070

  46. Neuhofer D, Ronacher B (2012) Influence of different envelope maskers on signal recognition and neuronal representation in the auditory system of a grasshopper. PLoS One 7(3):e34384

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. Neuhofer D, Wohlgemuth S, Stumpner A, Ronacher B (2008) Evolutionarily conserved coding properties of auditory across grasshopper species. Proc R Soc B 275:1965–1974

    PubMed Central  PubMed  Article  Google Scholar 

  48. Neuhofer D, Stemmler M, Ronacher B (2011) Neuronal precision and the limits for acoustic signal recognition in a small neuronal network. J Comp Physiol A 197:251–265

    Article  Google Scholar 

  49. Oldfield BP, Kleindienst H, Huber F (1986) Physiology and tonotopic organization of auditory receptors in the cricket Gryllus bimaculatus deGeer. J Comp Physiol A 159:457–464

    CAS  PubMed  Article  Google Scholar 

  50. Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    CAS  PubMed  Google Scholar 

  51. Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: pattern recognition controls reactive steering. PNAS 102:15665–15669

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AVM, Samengo I (2006) Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J Neurophysiol 95:2541–2552

    PubMed  Article  Google Scholar 

  53. Römer H (1987) Representation of auditory distance with a central neuropil of the bushcricket Megalopsis marki. J Comp Physiol 161:33–42

    Article  Google Scholar 

  54. Römer H, Krusch M (2000) A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera, Tettigoniidae). J Comp Physiol A 186:181–191

    PubMed  Article  Google Scholar 

  55. Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Article  Google Scholar 

  56. Römer H, Bailey WJ, Dadour I (1989) Insect hearing in the field: III masking by noise. J Comp Physiol A 164:609–620

    Article  Google Scholar 

  57. Römer H, Spickermann M, Bailey W (1998) Sensory basis for sound intensity discrimination in the bushcricket Requena verticalis (Tettigoniidae, Orthoptera). J Comp Physiol A 182:595–607

    Article  Google Scholar 

  58. Römer H, Hedwig B, Ott SR (2002) Contralateral inhibition as a sensory bias: the neural basis for a female preference in a synchronously calling bushcricket, Mecopoda elongate. Eur J Neurosci 15:1655–1662

    PubMed  Article  Google Scholar 

  59. Ronacher B, Hennig RM (2004) Neuronal adaptation improves the recognition of temporal patterns in a grasshopper. J Comp Physiol A 190:311–319. doi:10.1007/s00359-004-0498-3

    CAS  Article  Google Scholar 

  60. Ronacher B, Stumpner A (1988) Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. J Comp Physiol A 163:517–523

    Article  Google Scholar 

  61. Ronacher B, Stumpner A (1993) Parallel processing of song pattern and sound direction by ascending auditory interneurons in the grasshopper Chorthippus biguttulus. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds). Sensory systems of Arthropods. Birkhäuser, Basel, pp 376

  62. Ronacher B, von Helversen D, von Helversen O (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374

    Article  Google Scholar 

  63. Ronacher B, Krahe R, Hennig RM (2000) Effects of signal duration on the recognition of masked communication signals by the grasshopper Chorthippus biguttulus. J Comp Physiol A 186:1065–1072

    CAS  PubMed  Article  Google Scholar 

  64. Ronacher B, Hennig RM, Clemens J (2014) Computational principles underlying recognition of acoustic signals in grasshoppers and crickets. J Comp Physiol A. doi:10.1007/s00359-014-0946-7

  65. Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket’s brain. J Comp Physiol A 155:171–185

    Article  Google Scholar 

  66. Schmidt AKD, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    PubMed Central  PubMed  Article  Google Scholar 

  67. Schneider E, Hennig RM (2012) Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus. J Comp Physiol A 198:181–191

    CAS  Article  Google Scholar 

  68. Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. Neuroscience 138:1–4

    CAS  PubMed  Article  Google Scholar 

  69. Schul J, von Helversen D, Weber T (1998) Selective phonotaxis in Tettigonia cantans and T. viridissima in song recognition and discrimination. J Comp Physiol A182:687–694

    Article  Google Scholar 

  70. Sobel E, Tank DW (1994) In vivo Ca2+dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826

    CAS  PubMed  Article  Google Scholar 

  71. Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: localization depends on recognition of the calling song pattern. J Comp Physiol A 165:165–177

    Article  Google Scholar 

  72. Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101

    PubMed  Google Scholar 

  73. Stumpner A (2002) A species-specific frequency filter through specific inhibition, not specific excitation. J Comp Physiol A 188:239–248

  74. Stumpner A, Nowotny M (2014) Neural processing in the bushcricket auditory pathway. In: Hedwig B (ed) Topics of acoustic communication in insects, vol 1. Springer, Berlin, pp 143–166

    Google Scholar 

  75. Stumpner A, Ronacher B (1991) Auditory interneurons in the metathoracic ganglion of the grasshopper Chorthippus biguttulus 1. Morphological and physiological characterization. J Exp Biol 158:391–410

    Google Scholar 

  76. Stumpner A, Ronacher B (1994) Neurophysiological aspects of song pattern recognition and sound localization in grasshoppers. Am Zool 34:696–705

    Google Scholar 

  77. Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170

    CAS  PubMed  Article  Google Scholar 

  78. Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276

    CAS  PubMed  Article  Google Scholar 

  79. Vogel A, Ronacher B (2007) Neural correlations increase between consecutive processing levels in the auditory system of locusts. J Neurophysiol 97:3376–3385

    CAS  PubMed  Article  Google Scholar 

  80. Vogel A, Hennig RM, Ronacher B (2005) Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. J Neurophysiol 93:3548–3559

    CAS  PubMed  Article  Google Scholar 

  81. von Helversen O, von Helversen D (1994) Forces driving coevolution of song and song recognition in grasshoppers. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. G. Fischer Verlag, Stuttgart, pp 253–284

    Google Scholar 

  82. von Helversen D, von Helversen O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing. J Comp Physiol A 177:767–774

    Article  Google Scholar 

  83. von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180:373–386

    Article  Google Scholar 

  84. von Helversen D, von Helversen O (1998) Acoustic pattern recognition in a grasshopper: processing in the time or frequency domain? Biol Cybern 79(6):467–476

    Article  Google Scholar 

  85. Vonderschen K, Chacron MJ (2011) Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish. J Neurophysiol 106:3102–3118

    PubMed  Article  Google Scholar 

  86. Wimmer K, Hildebrandt KJ, Hennig RM, Obermayer K (2008) Adaptation and selective information transmission in the cricket auditory neuron AN2. PLoS Comput Biol 4:e1000182. doi:10.1371/journal.pcbi.1000182

    PubMed Central  PubMed  Article  Google Scholar 

  87. Wohlers D, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146:161–173

  88. Wohlgemuth S, Ronacher B (2007) Auditory discrimination of amplitude modulations based on metric distances of spike trains. J Neurophysiol 97:3082–3092

    PubMed  Article  Google Scholar 

  89. Wohlgemuth S, Vogel A, Ronacher B (2011) Encoding of amplitude modulations by auditory neurons of the locust: influence of modulation frequency, rise time, and modulation depth. J Comp Physiol A 197:61–74

    Article  Google Scholar 

  90. Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544

    CAS  PubMed  Article  Google Scholar 

  91. Zorovic M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105(5):2181–2194

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Bernhard Ronacher for critical reading of the manuscript. This work was funded by a grant to MH and JB by the Deutsche Forschungsgemeinschaft (SFB618).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Jannis Hildebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hildebrandt, K.J., Benda, J. & Hennig, R.M. Computational themes of peripheral processing in the auditory pathway of insects. J Comp Physiol A 201, 39–50 (2015). https://doi.org/10.1007/s00359-014-0956-5

Download citation

Keywords

  • Spike frequency adaptation
  • Neural coding
  • Sensory processing