Skip to main content
Log in

Ecology of acoustic signalling and the problem of masking interference in insects

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aide TM, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G, Alvarez R (2013) Real-time bioacoustics monitoring and automated species identification. PeerJ 1:e103

    Article  PubMed Central  PubMed  Google Scholar 

  • Baden T, Hedwig B (2007) Neurite specific Ca2+-dynamics underlying sound processing in an auditory interneurone. J Neurobiol 67:68–80

    Article  CAS  Google Scholar 

  • Bailey WJ, Morris GK (1986) Confusion of phonotaxis by masking sounds in the bushcricket Conocephalus brevipennis (Tettigoniidae: conocephalinae). Ethology 73:19–28

    Article  Google Scholar 

  • Balakrishnan R, Bahuleyan J, Nandi D, Jain M (2013) Modelling the effects of chorus species composition and caller density on acoustic masking interference in multispecies choruses of crickets and katydids. Ecol Inform. doi:10.1016/j.ecoinf.2013.11.006

  • Bee MA (2008) Finding a mate at a cocktail party: spatial release from masking improves acoustic mate recognition in grey treefrogs. Anim Behav 75:1781–1791

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA (2012) Sound source perception in anuran amphibians. Curr Opin Neurobiol 22:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos T Roy Soc B 353:407–419

    Article  Google Scholar 

  • Bermúdez-Cuamatzin E, Ríos-Chelén AA, Gil D, Garcia CM (2011) Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biol Lett 7:36–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Béthoux O, Nel A (2002) Venation pattern and revision of Orthoptera sensu nov. and sister groups. Phylogeny of palaeozoic and Mesozoic Orthoptera sensu nov. Zootaxa 96:1–88

    Google Scholar 

  • Bormpoudakis D, Sueur J, Pantis JD (2013) Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landsc Ecol 28:495–506

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert J, Capranica R, Ingle D (eds) Advances in vertebrate neuroethology. Plenum, New York, pp 701–730

    Chapter  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723

    Article  Google Scholar 

  • Conner WE (2014) Adaptive sounds and silences: acoustic anti-predator strategies in insects. In: Hedwig B (ed) Insect hearing and acoustic communication. Animal signals and communication, vol 1. Springer, Berlin, Heidelberg, pp 65–79

  • Couldridge VC, van Staaden MJ (2004) Habitat-dependent transmission of male advertisement calls in bladder grasshoppers (Orthoptera; Pneumoridae). J Exp Biol 207:2777–2786

    Article  PubMed  Google Scholar 

  • Diwakar S, Balakrishnan R (2007a) The assemblage of acoustically communicating crickets of a tropical evergreen forest in Southern India: call diversity and diel calling patterns. Bioacoustics 16:113–135

    Article  Google Scholar 

  • Diwakar S, Balakrishnan R (2007b) Vertical stratification in an acoustically communicating ensiferan assemblage of a tropical evergreen forest in Southern India. J Trop Ecol 23:479–486

    Article  Google Scholar 

  • Diwakar S, Jain M, Balakrishnan R (2007) Psychoacoustic sampling as a reliable, non—invasive method to monitor orthopteran species diversity in tropical forests. Biodiv Conserv 16:4081–4093

    Article  Google Scholar 

  • Ellinger N, Hödl W (2003) Habitat acoustics of a neotropical lowland rainforest. Bioacoustics 13:297–321

    Article  Google Scholar 

  • Elliott CJH, Koch UT (1985) The clockwork cricket. Naturwissenschaften 72:150–152

    Article  Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Amer Nat 139:125–153

    Article  Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Phil Trans R Soc Lond B 340:215–225

    Article  CAS  Google Scholar 

  • Ey E, Fischer J (2009) The ‘‘Acoustic Adaptation Hypothesis’’—a review of the evidence from birds, anurans and mammals. Bioacoustics 19:21–48

    Article  Google Scholar 

  • Fonseca PJ (2014) Cicada acoustic communication. In: Hedwig B (ed) Insect hearing and acoustic communication. Animal signals and communication, vol 1. Springer, Berlin, Heidelberg, pp 101–121

  • Gasc A, Sueur J, Pavoine S, Pellens R, Grandcolas P (2013) Biodiversity sampling using a global acoustic approach: contrasting sites with microendemics in New Caledonia. PLoS One 8:e65311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Gogala M, Riede K (1995) Time sharing of song activity by cicadas in Temengor Forest Reserve, Hulu Perak, and Sabah, Malaysia. Malay Nat J 48:297–305

    Google Scholar 

  • Gorochov AV, Rasnitsyn AP (2002) Superorder Gryllidea Laicharting, 1781. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, Dordrecht, pp 293–303

    Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Grant PCB (2014) Acoustic profiling of the landscape. Ph. D thesis, Stellenbosch University, South Africa

  • Greenfield MD (2014) Acoustic communication in the nocturnal Lepidoptera. In: Hedwig B (ed) Insect hearing and acoustic communication. Animal signals and communication, vol 1. Springer, Berlin, Heidelberg, pp 81–100

  • Gu J-J, Montealegre ZF, Robert D, Engel MS, Xiao G-X, Ren D (2012) Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. Proc Natl Acad Sci USA 109:3868–3873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halfwerk W, Holleman LJM, Lessells CM, Slabbekoorn H (2011) Negative impact of traffic noise on avian reproductive success. J Appl Ecol 48:210–219

    Article  Google Scholar 

  • Hedwig B (2014) Towards an understanding of the neural basis of acoustic communication in crickets. In Hedwig B (ed) Insect hearing and acoustic communication. Animal signals and communication, vol 1. Springer, Berlin, Heidelberg, pp 123–141

  • Hedwig B, Robert D (2014) Auditory parasitoid flies exploiting acoustic communication of insects. In: Hedwig B (ed) Insect hearing and acoustic communication. Animal signals and communication, vol 1. Springer, Berlin, Heidelberg, pp 45–63

  • Heller KG (1995) Acoustic signalling in palaeotropical bushcrickets (Orthoptera: tettigonioidea: Pseudophyllidae): does predation pressure by eavesdropping enemies differ in the Palaeo-and Neotropics? J Zool 237:469–485

    Article  Google Scholar 

  • Hoskin CJ, Higgie M (2010) Speciation via species interactions: the divergence of mating traits within species. Ecol Lett 13:409–420

    Article  PubMed  Google Scholar 

  • Jain M, Balakrishnan R (2011) Microhabitat selection in an assemblage of crickets (Orthoptera: ensifera) of a tropical evergreen forest in Southern India. Insect Conserv Div 4:152–158

    Article  Google Scholar 

  • Jain M, Balakrishnan R (2012) Does acoustic adaptation drive vertical stratification? A test in a tropical cricket assemblage. Behav Ecol 23:343–354

    Article  Google Scholar 

  • Jain M, Kuriakose G, Balakrishnan R (2010) Evaluation of methods to estimate foliage density in the understorey of a tropical evergreen forest. Curr Sci 98:508–515

    Google Scholar 

  • Jain M, Diwakar S, Bahuleyan J, Deb R, Balakrishnan R (2014) A rain forest dusk chorus: cacophony or sounds of silence? Evol Ecol 28:1–22

    Article  Google Scholar 

  • Kostarakos K, Hartbauer M, Römer H (2008) Matched filters, mate choice and the evolution of sexually selected traits. PLoS One 3:e3005

    Article  PubMed Central  PubMed  Google Scholar 

  • Kostarakos K, Hennig MR, Römer H (2009) Two matched filters and the evolution of mating signals in four species of cricket. Front Zool 6:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Krause BL (1987) Bioacoustics, habitat ambience in ecological balance. Whole Earth Rev 57:14–18

    Google Scholar 

  • Lampe U, Schmoll T, Franzke A, Reinhold K (2012) Staying tuned: grasshoppers from noisy roadside habitats produce courtship signals with elevated frequency components. Funct Ecol 26:1348–1354

    Article  Google Scholar 

  • Lampe U, Reinhold K, Schmoll T (2014) How grasshoppers respond to road noise: developmental plasticity and population differentiation in acoustic signaling. Funct Ecol. doi:10.1111/1365-2435.12215

  • MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619

    Article  Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalization. Behav Ecol Sociobiol 2:271–290

    Article  Google Scholar 

  • Mendeson TC, Shaw KL (2012) The (mis)concept of species recognition. Trends Ecol Evol 27:421–427

    Article  Google Scholar 

  • Montealegre-Z F, Morris GK, Mason AC (2006) Generation of extreme ultrasonics in rainforest katydids. J Exp Biol 209:4923–4937

    Article  PubMed  Google Scholar 

  • Montealegre-Z F, Jonsson T, Robert D (2011) Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: gryllidae). J Exp Biol 214:2105–2117

    Article  PubMed  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Nischk F, Otte D (2000) Bioacoustics, ecology and systematics of Ecuadorian rainforest crickets (Orthoptera: gryllidae: Phalangopsinae), with a description of four new genera and ten new species. J Orthopt Res 9(229–2):54

    Google Scholar 

  • Paul RC, Walker TJ (1979) Arboreal singing in a burrowing cricket, Anurogryllusa arboreus. J Comp Physiol A 132:217–223

    Article  Google Scholar 

  • Penone C, Le Viol I, Pellissier V, Julien J-F, Bas Y, Kerbiriou C (2013) Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities. Conserv Biol 27:979–987

    PubMed  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  • Pijanowski BC, Gage SH, Dumyahn SL, Krause BL (2011) What is soundscape ecology? An introduction and overview of an emerging new science. Landsc Ecol 26:1213–1232

    Article  Google Scholar 

  • Pollack GS (1986) Discrimination of calling song models by the cricket, Teleogryllus oceanicus: the influence of sound direction on neural coding of the stimulus temporal pattern and on phonotactic behaviour. J Comp Physiol A 158:549–561

    Article  Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    CAS  PubMed  Google Scholar 

  • Riede K (1993) Monitoring biodiversity: analysis of Amazonian rainforest sounds. Ambio 22:546–548

    Google Scholar 

  • Riede K (1997) Bioacoustic diversity and resource partitioning in tropical calling communities. In: Tropical Biodiversity and Systematics, pp 275–280. Proceedings of the International Symposium on Biodiversity and Systematics in Tropical Ecosystems, Bonn

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Philos T Roy Soc B 340:179–185

    Article  Google Scholar 

  • Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy R, Popper A, Fay R (eds) Comparative hearing: insects. Handbook of auditory research. Springer, Berlin, pp 63–96

    Chapter  Google Scholar 

  • Römer H (2013) Masking by noise in acoustic insects: problems and solutions. In: Brumm H (ed) Animal communication and noise, vol 2. Springer, Berlin, Heidelberg, pp 33–63

    Chapter  Google Scholar 

  • Römer H, Krusch M (2000) A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae). J Comp Physiol A 186:181–191

    Article  PubMed  Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Article  Google Scholar 

  • Ryan MJ (1990) Sexual selection, sensory systems and sensory exploitation. Oxf Surv Evolut Biol 5:157–195

    Google Scholar 

  • Samways MJ, Sergeev MG (1997) Orthoptera and landscape change. In: Gangwere SK, Muralirangan MC, Muralirangan M (eds) The bionomics of grasshoppers, katydids and their kin. CAB International, Oxon

    Google Scholar 

  • Schmidt AKD, Römer H (2011) Solutions to the cocktail party problem in insects: selective filters, spatial release from masking and gain control in tropical crickets. PLoS One 6:e28593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt AKD, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt AKD, Römer H, Riede K (2013) Spectral niche segregation and community organization in a tropical cricket assemblage. Behav Ecol 24:470–480

    Article  Google Scholar 

  • Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  CAS  PubMed  Google Scholar 

  • Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. J Neurosci 138:1–4

    Article  CAS  Google Scholar 

  • Schul J, Mayo AM, Triblehorn JD (2012) Auditory change detection by a single neuron in an insect. J Comp Physiol A 198:695–704

    Article  Google Scholar 

  • Senter P (2008) Voices of the past: a review of Paleozoic and Mesozoic animal sounds. Hist Biol 20:255–287

    Article  Google Scholar 

  • Shieh BS, Liang SH, Chen CC, Loa HH, Liao CY (2012) Acoustic adaptations to anthropogenic noise in the cicada Cryptotympana takasagona Kato (Hemiptera: cicadidae). Acta Ethol 15:33–38

    Article  Google Scholar 

  • Siegert ME, Römer H, Hartbauer M (2013) Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation. J Exp Biol 216:4655–4665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siemers BM, Schaub A (2011) Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc Lond B 278:1646–1652

    Article  Google Scholar 

  • Simmons AM (2013) “To ear is human, to forgive is divine”: bob Capranica`s legacy to auditory neuroethlogy. J Comp Physiol A 199:169–182

    Article  Google Scholar 

  • Slabbekoorn H, den Boer-Visser A (2006) Cities change the songs of birds. Curr Biol 16:2326–2331

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise—great tits hit the high notes to ensure that their mating calls are heard above the city’s din. Nature 424:267

    Article  CAS  PubMed  Google Scholar 

  • Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826

    Article  CAS  PubMed  Google Scholar 

  • Stumpner A, Nowotny M (2014) Neural processing in the bush-cricket auditory pathway. In: Hedwig B (ed) Insect hearing and acoustic communication. Animal signals and communication, vol 1. Springer, Berlin, Heidelberg, pp 143–166

  • Sueur J (2002) Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: cicadomorpha: Cicadidae). Biol J Linn Soc 75:379–394

    Article  Google Scholar 

  • Sueur J, Aubin T (2003) Is microhabitat segregation between two cicada species (Tibicina haematodes and Cicada orni) due to calling song propagation constraints? Naturwissenschaften 90:322–326

    Article  CAS  PubMed  Google Scholar 

  • Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS One 3:e4065

    Article  PubMed Central  PubMed  Google Scholar 

  • van Staaden MJ, Römer H (1997) Sexual signaling in bladder grasshoppers: tactical design for maximizing calling range. J Exp Biol 200:2597–2608

    PubMed  Google Scholar 

  • von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180:373–386

    Article  Google Scholar 

  • Wehner R (1987) “Matched filters”-neural models of the external world. J Comp Physiol A 161:511–531

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptation for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH, Quellet H (eds) acoustic communication in birds. Academic, New York, pp 131–181

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Austrian Science Foundation (FWF; P20882-B09) and the Ministry of Environment and Forests, Government of India, for supporting research projects conducted in Panama and India, respectively. They thank Jerome Sueur for help with locating interesting publications on paleobioacoustics and Diptarup Nandi for drawing the illustration in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne K. D. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, A.K.D., Balakrishnan, R. Ecology of acoustic signalling and the problem of masking interference in insects. J Comp Physiol A 201, 133–142 (2015). https://doi.org/10.1007/s00359-014-0955-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0955-6

Keywords

Navigation