Journal of Comparative Physiology A

, Volume 200, Issue 6, pp 463–474 | Cite as

Multisensory integration of colors and scents: insights from bees and flowers

  • Anne S. LeonardEmail author
  • Pavel Masek


Karl von Frisch’s studies of bees’ color vision and chemical senses opened a window into the perceptual world of a species other than our own. A century of subsequent research on bees’ visual and olfactory systems has developed along two productive but independent trajectories, leaving the questions of how and why bees use these two senses in concert largely unexplored. Given current interest in multimodal communication and recently discovered interplay between olfaction and vision in humans and Drosophila, understanding multisensory integration in bees is an opportunity to advance knowledge across fields. Using a classic ethological framework, we formulate proximate and ultimate perspectives on bees’ use of multisensory stimuli. We discuss interactions between scent and color in the context of bee cognition and perception, focusing on mechanistic and functional approaches, and we highlight opportunities to further explore the development and evolution of multisensory integration. We argue that although the visual and olfactory worlds of bees are perhaps the best-studied of any non-human species, research focusing on the interactions between these two sensory modalities is vitally needed.


Multimodal Bees Integration Color Scent 



Antennal lobe


Kenyon cell


Mushroom body


Proboscis extension response



We thank the editors for the invitation to contribute to this special issue, and J. Francis and F. Muth for comments on the manuscript. A.S.L. thanks D.R. Papaj and A. Dornhaus and their labs for discussions that fostered a multisensory worldview. This work was made possible by grants from the National Institute of General Medical Sciences (INBRE P20GM103440 and COBRE 5P20GM103650) to PM and by NSF Grant #IOS-1257762 to ASL.


  1. Alais D, Newell FN, Mamassian P (2010) Multisensory processing in review: from physiology to behaviour. Seeing Perceiving 23:3–38PubMedGoogle Scholar
  2. Balkenius A, Dacke M (2010) Flight behaviour of the hawkmoth Manduca sexta towards unimodal and multimodal targets. J Exp Biol 213:3741–3747. doi: 10.1242/jeb.043760 PubMedGoogle Scholar
  3. Balkenius A, Hansson B (2012) Discrimination training with multimodal stimuli changes activity in the mushroom body of the hawkmoth Manduca sexta. PLoS One 7:e32133. doi: 10.1371/journal.pone.0032133 PubMedCentralPubMedGoogle Scholar
  4. Balkenius A, Kelber A (2006) Colour preferences influences odour learning in the hawkmoth, Macroglossum stellatarum. Naturwissenschaften 93:255–258. doi: 10.1007/s00114-006-0099-9 PubMedGoogle Scholar
  5. Balkenius A, Rosén W, Kelber A (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J Comp Physiol A 192:431–437. doi: 10.1007/s00359-005-0081-6 Google Scholar
  6. Balkenius A, Kelber A, Balkenius C (2008) How do hawkmoths learn multimodal stimuli? A comparison of three models. Adapt Behav 16:349–360. doi: 10.1177/1059712308092955 Google Scholar
  7. Balkenius A, Bisch-Knaden S, Hansson B, Bisch-Knade S (2009) Interaction of visual and odour cues in the mushroom body of the hawkmoth Manduca sexta. J Exp Biol 212:535–541. doi: 10.1242/jeb.021220 PubMedGoogle Scholar
  8. Biesmeijer JC, Giurfa M, Koedam D et al (2005) Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Naturwissenschaften 92:444–450. doi: 10.1007/s00114-005-0017-6 PubMedGoogle Scholar
  9. Bremner AJ, Lewkowicz DJ, Spence C (2012) The multisensory approach to development. In: Bremner AJ, Lewkowicz DJ, Spence C (eds) Multisensory development. Oxford University Press, Oxford, pp 1–28Google Scholar
  10. Bronstein JL, Alarcon R, Geber M (2006) The evolution of plant–insect mutualisms. New Phytol 172:412–428PubMedGoogle Scholar
  11. Burger H, Dötterl S, Ayasse M (2010) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240Google Scholar
  12. Burger H, Ayasse M, Dötterl S et al (2013) Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist and generalist. J Comp Physiol A 199:751–761. doi: 10.1007/s00359-013-0835-5 Google Scholar
  13. Burns J, Dyer AG (2008) Diversity of speed-accuracy strategies benefits social insects. Curr Biol 18:953–954Google Scholar
  14. Chen K, Zhou B, Chen S et al (2013) Olfaction spontaneously highlights visual saliency map. Proc R Soc B 280:20131729PubMedGoogle Scholar
  15. Chittka L, Briscoe A (2001) Why sensory ecology needs to become more evolutionary: insect color vision as a case in point. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 19–37Google Scholar
  16. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. J Comp Physiol A 171:171–181Google Scholar
  17. Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435PubMedGoogle Scholar
  18. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377. doi: 10.1007/s001140050636 Google Scholar
  19. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388PubMedGoogle Scholar
  20. Chow DM, Theobald JC, Frye MA (2011) An olfactory circuit increases the fidelity of visual behavior. J Neurosci 31:15035–15047. doi: 10.1523/JNEUROSCI.1736-11.2011 PubMedCentralPubMedGoogle Scholar
  21. Coleman SW (2009) Taxonomic and sensory biases in the mate-choice literature: there are far too few studies of chemical and multimodal communication. Acta Ethol 12:45–48Google Scholar
  22. Couvillon PA, Bitterman ME (1980) Some phenomena of associative learning in honeybees. J Comp Physiol Psychol 94:878–885. doi: 10.1037/h0077808 Google Scholar
  23. Couvillon PA, Bitterman ME (1982) Compound conditioning in honeybees. J Comp Physiol Psychol 96:192–199. doi: 10.1037/h0077869 Google Scholar
  24. Dafni A, Lehrer M, Kevan PG (1997) Spatial flower parameters and insect spatial vision. Biol Rev Camb Philos Soc 72:239–282. doi: 10.1017/S0006323196005002 Google Scholar
  25. Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302. doi: 10.1146/annurev.neuro.28.061604.135651 PubMedGoogle Scholar
  26. De Araujo IE, Rolls ET, Velazco MI et al (2005) Cognitive modulation of olfactory processing. Neuron 46:671–679. doi: 10.1016/j.neuron.2005.04.021 PubMedGoogle Scholar
  27. Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9:112–121. doi: 10.1101/lm.41002 PubMedCentralPubMedGoogle Scholar
  28. Dobrin SE, Fahrbach SE (2012) Visual associative learning in restrained honey bees with intact antennae. PLoS One 7:e37666. doi: 10.1371/journal.pone.0037666 PubMedCentralPubMedGoogle Scholar
  29. Dobson H, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87Google Scholar
  30. Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88:668–697. doi: 10.1139/Z10-031 Google Scholar
  31. Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114. doi: 10.1007/s00359-003-0475-2 Google Scholar
  32. Dyer AG, Chittka L (2004b) Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. J Comp Physiol A 190:759–763. doi: 10.1007/s00359-004-0547-y Google Scholar
  33. Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959. doi: 10.1098/rspb.2010.2412 PubMedCentralPubMedGoogle Scholar
  34. Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373PubMedGoogle Scholar
  35. Erber J (1978) Response characteristics and after effects of multimodal neurons in the mushroom body area of the honey. Physiol Entomol 3:77–89Google Scholar
  36. Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232PubMedGoogle Scholar
  37. Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18. doi: 10.1159/000352057 PubMedGoogle Scholar
  38. Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404PubMedGoogle Scholar
  39. Frye MA, Tarsitano M, Dickinson MH (2003) Odor localization requires visual feedback during free flight in Drosophila melanogaster. J Exp Biol 206:843–855. doi: 10.1242/jeb.00175 PubMedGoogle Scholar
  40. Galán RF, Weidert M, Menzel R et al (2006) Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli. Neural Comput 18:10–25. doi: 10.1162/089976606774841558 PubMedGoogle Scholar
  41. Gegear RJ (2005) Multicomponent floral signals elicit selective foraging in bumblebees. Naturwissenschaften 92:269–271PubMedGoogle Scholar
  42. Gerber B, Smith BH (1998) Visual modulation of olfactory learning in honeybees. J Exp Biol 201:2213–2217PubMedGoogle Scholar
  43. Gerber B, Tanimoto H, Heisenberg M (2004) An engram found? Evaluating the evidence from fruit flies. Curr Opin Neurobiol 14:737–744. doi: 10.1016/j.conb.2004.10.014 PubMedGoogle Scholar
  44. Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735. doi: 10.1016/j.conb.2003.10.015 PubMedGoogle Scholar
  45. Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824Google Scholar
  46. Giurfa M, Nunez J, Backhaus W (1994) Odour and colour information in the foraging choice behaviour of the honeybee. J Comp Physiol A 175:773–779. doi: 10.1007/BF00191849 Google Scholar
  47. Giurfa M, Schubert M, Reisenman C et al (2003) The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees. Behav Brain Res 145:161–169. doi: 10.1016/S0166-4328(03)00104-9 PubMedGoogle Scholar
  48. Gottfried J, Dolan RJ (2003) The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39:375–386PubMedGoogle Scholar
  49. Gould JL (1993) Ethological and comparative perspectives on honey bee learning. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, pp 18–50Google Scholar
  50. Goyret J, Markwell PM, Raguso RA (2007) The effect of decoupling olfactory and visual stimuli on the foraging behavior of Manduca sexta. J Exp Biol 210:1398–1405. doi: 10.1242/jeb.02752 PubMedGoogle Scholar
  51. Goyret J, Kelber A, Pfaff M, Raguso RA (2009) Flexible responses to visual and olfactory stimuli by foraging Manduca sexta: larval nutrition affects adult behaviour. Proc R Soc B 276:2739–2745PubMedCentralPubMedGoogle Scholar
  52. Gronenberg W (1999) Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol 54:85–95. doi: 10.1159/000006615 PubMedGoogle Scholar
  53. Gronenberg W (2001) Subdivisions of Hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 435:474–489PubMedGoogle Scholar
  54. Grünewald B (1999) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J Comp Neurol 404:114–126. doi:10.1002/(SICI)1096-9861(19990201)404:1<114:AID-CNE9>3.0.CO;2-#PubMedGoogle Scholar
  55. Guilford T, Dawkins M (1993) Receiver psychology and the design of animal signals. Trends Neurosci 16:430–436PubMedGoogle Scholar
  56. Guo J, Guo A (2005) Crossmodal interactions between olfactory and visual learning in Drosophila. Science 309:307–310. doi: 10.1126/science.1111280 PubMedGoogle Scholar
  57. Hebets EA (2011) Current status and future directions of research in complex signaling. Curr Zool 57:I–VGoogle Scholar
  58. Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214Google Scholar
  59. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275. doi: 10.1038/nrn1074 PubMedGoogle Scholar
  60. Hu A, Zhang W, Wang Z (2010) Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. Proc Natl Acad Sci USA 107:10262–10267. doi: 10.1073/pnas.0914912107 PubMedCentralPubMedGoogle Scholar
  61. Hussaini SA, Menzel R (2013) Mushroom body extrinsic neurons in the honeybee brain encode cues and contexts differently. J Neurosci 33:7154–7164. doi: 10.1523/JNEUROSCI.1331-12.2013 PubMedGoogle Scholar
  62. Jadauji JB, Djordjevic J, Lundström JN, Pack CC (2012) Modulation of olfactory perception by visual cortex stimulation. J Neurosci 32:3095–3100. doi: 10.1523/JNEUROSCI.6022-11.2012 PubMedGoogle Scholar
  63. Jones BM, Leonard S, Papaj DR, Gronenberg W (2013) Plasticity of the worker bumblebee brain in relation to age and rearing environment. Brain Behav Evol. doi: 10.1159/000355845 PubMedGoogle Scholar
  64. Kaczorowski RL, Leonard AS, Dornhaus A, Papaj DR (2012) Floral signal complexity as a possible adaptation to environmental variability: a test using nectar-foraging bumblebees, Bombus impatiens. Anim Behav 83:905–913. doi: 10.1016/j.anbehav.2012.01.007 Google Scholar
  65. Katzenberger TD, Lunau K, Junker RR (2013) Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. Behav Ecol Sociobiol 67:1587–1599. doi: 10.1007/s00265-013-1570-1 Google Scholar
  66. Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321(80):1200–1202. doi: 10.1126/science.1160072 PubMedGoogle Scholar
  67. Kessler D, Diezel C, Clark DG et al (2013) Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett 16:299–306. doi: 10.1111/ele.12038 PubMedGoogle Scholar
  68. Klahre U, Gurba A, Hermann K et al (2011) Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr Biol 21:730–739. doi: 10.1016/j.cub.2011.03.059 PubMedGoogle Scholar
  69. Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc Biol Sci 275:797–802. doi: 10.1098/rspb.2007.1176 PubMedCentralPubMedGoogle Scholar
  70. Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456Google Scholar
  71. Laurienti PJ, Hugenschmidt CE (2012) Multisensory processes in old age. In: Bremner AJ, Lewkowicz DJ, Spence C (eds) Multisensory development. Oxford University Press, Oxford, pp 251–272Google Scholar
  72. Leonard AS, Hedrick A (2010) Long-distance signals influence assessment of close range mating displays in the field cricket, Gryllus integer. Biol J Linn Soc 100:856–865Google Scholar
  73. Leonard AS, Dornhaus A, Papaj DR (2011a) Forget-me-not: complex floral displays, inter-signal interactions, and pollinator cognition. Curr Zool 57:215–224Google Scholar
  74. Leonard AS, Dornhaus A, Papaj DR (2011b) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121. doi: 10.1242/jeb.047407 PubMedCentralPubMedGoogle Scholar
  75. Leonard AS, Dornhaus A, Papaj DR (2012) Why are floral signals complex? An outline of functional hypotheses. In: Patiny S (ed) Evolution of plant–pollinator relationships. Cambridge University Press, Cambridge, pp 261–282Google Scholar
  76. Leonard AS, Brent J, Papaj DR, Dornhaus A (2013) Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS One 8:e55914. doi: 10.1371/journal.pone.0055914 PubMedCentralPubMedGoogle Scholar
  77. Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400:753–756. doi: 10.1038/23456 PubMedGoogle Scholar
  78. Liu G, Seiler H, Wen A et al (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556. doi: 10.1038/nature04381 PubMedGoogle Scholar
  79. Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111. doi: 10.1007/BF00984097 Google Scholar
  80. Lynn SK, Cnaai J, Papaj DR (2005) Peak shift discrimination learning as a mechanism of signal evolution. Evolution 59:1300–1305PubMedGoogle Scholar
  81. McFrederick QS, Fuentes JD, Roulston T et al (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160:411–420. doi: 10.1007/s00442-009-1318-9 PubMedGoogle Scholar
  82. Menzel R (1983) Neurobiology of learning and memory: the honeybee as a model system. Naturwissenschaften 70:504–511PubMedGoogle Scholar
  83. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340. doi: 10.1007/s003590050392 Google Scholar
  84. Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53–62PubMedGoogle Scholar
  85. Milet-Pinheiro P, Ayasse M, Schlindwein C et al (2012) Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior. Behav Ecol 23:531–538. doi: 10.1093/beheco/arr219 Google Scholar
  86. Mobbs PG (1982) The brain of the honeybee Apis mellifera. The connections and spatial-organization of the mushroom bodies. Phil Trans R Soc B Biol Sci 298:309–354Google Scholar
  87. Morawetz L, Spaethe J (2012) Visual attention in a complex search task differs between honeybees and bumblebees. J Exp Biol 215:2515–2523. doi: 10.1242/jeb.066399 PubMedGoogle Scholar
  88. Morrot G, Brochet F, Dubourdieu D (2001) The color of odors. Brain Lang 79:309–320. doi: 10.1006/brln.2001.2493 PubMedGoogle Scholar
  89. Mota T, Giurfa M, Sandoz J (2011) Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 18:144–155. doi: 10.1101/lm.2073511 PubMedGoogle Scholar
  90. Rodacy PJ, Bender S, Bromenshenk J, Henderson C, Bender G (2002) Training and deployment of honeybees to detect explosives and other agents of harm. In: Broach JT, Harmon RS, Dobeck GJ (eds) Proceedings of SPIE, Detection and remediation technologies for mines and minelike targets VII, vol 4742. Orlando, FL, USA, pp 509–519Google Scholar
  91. Odell E, Raguso RA, Jones KN (1999) Bumblebee foraging responses to variation in floral scent and color in snapdragons. Am Midl Nat 142:257–265Google Scholar
  92. Ofstad TA, Zuker CS, Reiser MB (2011) Visual place learning in Drosophila melanogaster. Nature 474:204–207. doi: 10.1038/nature10131 PubMedCentralPubMedGoogle Scholar
  93. Partan SR (2013) Ten unanswered questions in multimodal communication. Behav Ecol Sociobiol 67:1523–1539. doi: 10.1007/s00265-013-1565-y PubMedCentralPubMedGoogle Scholar
  94. Partan SR, Marler P (1999) Communication goes multimodal. Science 283:1272–1273PubMedGoogle Scholar
  95. Pelletier L, McNeil JN (2003) The effect of food supplementation on reproductive success in bumblebee field colonies. Oikos 103:688–694Google Scholar
  96. Raguso RA (2004) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440PubMedGoogle Scholar
  97. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569. doi: 10.1146/annurev.ecolsys.38.091206.095601 Google Scholar
  98. Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim Behav 64:685–695. doi: 10.1006/anbe.2002.4010 Google Scholar
  99. Raguso RA, Willis MA (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Anim Behav 69:407–418. doi: 10.1016/j.anbehav.2004.04.015 Google Scholar
  100. Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381. doi: 10.1242/jeb.01306 PubMedGoogle Scholar
  101. Reinhard J, Srinivasan MV, Zhang S (2006) Complex memories in honeybees: can there be more than two? J Comp Physiol A 192:409–416. doi: 10.1007/s00359-005-0079-0 Google Scholar
  102. Riveros AJ, Gronenberg W (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain Behav Evol 75:138–148. doi: 10.1159/000306506 PubMedCentralPubMedGoogle Scholar
  103. Riveros AJ, Gronenberg W (2012) Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens). Anim Cogn 15:1183–1193. doi: 10.1007/s10071-012-0542-6 PubMedGoogle Scholar
  104. Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931PubMedGoogle Scholar
  105. Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27:5879–5884. doi: 10.1523/JNEUROSCI.4986-06.2007 PubMedGoogle Scholar
  106. Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465. doi: 10.1002/cne.903340309 PubMedGoogle Scholar
  107. Schaefer HM, Ruxton GD (2010) Deception in plants: mimicry or perceptual exploitation? Trends Ecol Evol 24:676–684. doi: 10.1016/j.tree.2009.06.006 Google Scholar
  108. Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584Google Scholar
  109. Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656. doi: 10.1111/j.1461-0248.2010.01451.x PubMedGoogle Scholar
  110. Schiestl FP, Johnson SD, Raguso RA (2010) Floral evolution as a figment of the imagination of pollinators. Trends Ecol Evol 25:382–383PubMedGoogle Scholar
  111. Sheehan H, Hermann K, Kuhlemeier C (2012) Color and scent: how single genes influence pollinator attraction. Cold Spring Harb Symp Quant Biol 77:117–133. doi: 10.1101/sqb.2013.77.014712 PubMedGoogle Scholar
  112. Shettleworth SJ (1998) Cognition, evolution and behavior. Oxford University Press, New YorkGoogle Scholar
  113. Small DM (2004) Crossmodal integration—insights from the chemical senses. Trends Neurosci 27:118–120. doi: 10.1016/j.tins.2003.12.010 Google Scholar
  114. Smith CL, Evans CS (2013) A new heuristic for capturing the complexity of multimodal signals. Behav Ecol Sociobiol 67:1389–1398. doi: 10.1007/s00265-013-1490-0 Google Scholar
  115. Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453. doi: 10.1242/jeb.00570 PubMedGoogle Scholar
  116. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903. doi: 10.1073/pnas.071053098 PubMedCentralPubMedGoogle Scholar
  117. Spaethe J, Tautz J, Chittka L (2006) Do honeybees detect colour targets using serial or parallel visual search? J Exp Biol 209:987–993. doi: 10.1242/jeb.02124 PubMedGoogle Scholar
  118. Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733–739. doi: 10.1007/s00114-007-0251-1 PubMedGoogle Scholar
  119. Spitzer B, Zvi MM Ben, Ovadis M et al (2007) Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in Petunia. Plant Physiol 145:1241–1250. doi: 10.1104/pp.107.105916 PubMedCentralPubMedGoogle Scholar
  120. Stein BE (2012) The new handbook of multisensory processes. MIT Press, Cambridge, MassGoogle Scholar
  121. Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, Cambridge, LondonGoogle Scholar
  122. Stewart FJ, Baker DA, Webb B (2010) A model of visual-olfactory integration for odour localisation in free-flying fruit flies. J Exp Biol 213:1886–1900. doi: 10.1242/jeb.026526 PubMedGoogle Scholar
  123. Strausfeld NJ (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450:4–33. doi: 10.1002/cne.10285 PubMedGoogle Scholar
  124. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap Press, Harvard University Press, Cambridge, MassGoogle Scholar
  125. Strausfeld NJ, Hansen L, Li Y et al (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37. doi: 10.1101/lm.5.1.11 PubMedCentralPubMedGoogle Scholar
  126. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291. doi: 10.1002/cne.21948 PubMedGoogle Scholar
  127. Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370. doi: 10.1242/jeb.027482 PubMedGoogle Scholar
  128. Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG (2010) The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci 14:400–410. doi: 10.1016/j.tics.2010.06.008 PubMedCentralPubMedGoogle Scholar
  129. Tang S, Guo A (2001) Choice behavior of Drosophila facing contradictory visual cues. Science 294:1543–1547. doi: 10.1126/science.1058237 PubMedGoogle Scholar
  130. Tinbergen N (1963) On aims and methods of ethology. Z Tierpsychol 20:410–433Google Scholar
  131. Uy JAC, Safran RJ (2013) Variation in the temporal and spatial use of signals and its implications for multimodal communication. Behav Ecol Sociobiol 67:1499–1511. doi: 10.1007/s00265-013-1492-y Google Scholar
  132. Van der Burg E, Olivers CNL, Bronkhorst AW, Theeuwes J (2008) Pip and pop: nonspatial auditory signals improve spatial visual search. J Exp Psychol Hum Percept Perform 34:1053–1065. doi: 10.1037/0096-1523.34.5.1053 PubMedGoogle Scholar
  133. Van der Burg E, Olivers CNL, Bronkhorst AW, Theeuwes J (2009) Poke and pop: tactile-visual synchrony increases visual saliency. Neurosci Lett 450:60–64. doi: 10.1016/j.neulet.2008.11.002 PubMedGoogle Scholar
  134. Van Swinderen B, Greenspan RJ (2003) Salience modulates 20–30 Hz brain activity in Drosophila. Nat Neurosci 6:579–586. doi: 10.1038/nn1054 PubMedGoogle Scholar
  135. von Frisch K (1956) Bees: their vision, chemical senses and language. Cornell University Press, Ithaca, LondonGoogle Scholar
  136. von Frisch K (1966) The dancing bees/Aus dem Leben der Bienen, 7th edn. Harcourt, Brace & World, Inc., New YorkGoogle Scholar
  137. Wolf R, Wittig T, Liu L et al (1998) Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5:166–178. doi: 10.1101/lm.5.1.166 PubMedCentralPubMedGoogle Scholar
  138. Yarali A, Hendel T, Gerber B (2006) Olfactory learning and behaviour are “insulated” against visual processing in larval Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1133–1145. doi: 10.1007/s00359-006-0140-7 PubMedGoogle Scholar
  139. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011) Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem 96:339–352. doi: 10.1016/j.nlm.2011.06.009 PubMedGoogle Scholar
  140. Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42:437–449. doi: 10.1016/S0896-6273(04)00217-X PubMedGoogle Scholar
  141. Zhou W, Jiang Y, He S, Chen D (2010) Olfaction modulates visual perception in binocular rivalry. Curr Biol 20:1356–1358. doi: 10.1016/j.cub.2010.05.059 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Nevada, RenoRenoUSA

Personalised recommendations