Skip to main content
Log in

Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The Central Australian desert ant Melophorus bagoti is known to use celestial cues for compass orientation. We manipulated the available celestial cues for compass orientation for ants that had arrived at a feeder, were captured and then released at a distant test site that had no useful terrestrial panoramic cues. When tested in an enclosed transparent box that blocked some or most of the ultraviolet light, the ants were still well oriented homewards. The ants were again significantly oriented homewards when most of the ultraviolet light as well as the sun was blocked, or when the box was covered with tracing paper that eliminated the pattern of polarised light, although in the latter case, their headings were more scattered than in control (full-cue) conditions. When the position of the sun was reflected 180° by a mirror, the ants headed off in an intermediate direction between the dictates of the sun and the dictates of unrotated cues. We conclude that M. bagoti uses all available celestial compass cues, including the pattern of polarised light, the position of the sun, and spectral and intensity gradients. They average multiple cues in a weighted fashion when these cues conflict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Article  CAS  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853

    Article  PubMed  Google Scholar 

  • Cheng K (2012) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Zentall TR, Wasserman EA (eds) The Oxford handbook of comparative cognition. Oxford University Press, Oxford, pp 347–365

    Google Scholar 

  • Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133:625–637

    Article  PubMed  Google Scholar 

  • Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Process 80:261–268

    Article  Google Scholar 

  • Cheng K, Middleton EJT, Wehner R (2012) Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J Exp Biol 215:3169–3174

    Article  PubMed  Google Scholar 

  • Christian KA, Morton SR (1992) Extreme thermophilia in a Central Australian ant, Melophorus bagoti. Physiol Zool 65:885–905

    Google Scholar 

  • Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Collett M (2000) Path integration in insects. Curr Opinion Neurobiol 10:757–762

    Article  CAS  Google Scholar 

  • Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path Integration in mammals. Hippocampus 14:180–192

    Article  PubMed  Google Scholar 

  • Etienne AS, Maurer R, Berlie J, Reverdin B, Rowe T, Georgakopoulos J, Seguinot V (1998) Navigation through vector addition. Nature 396:161–164

    Article  CAS  PubMed  Google Scholar 

  • Fent K, Wehner R (1985) Ocelli: a celestial compass in the desert ant Cataglyphis. Science 228:192–194

    Article  CAS  PubMed  Google Scholar 

  • Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory Monarch butterflies. Neuron 69:345–358

    Article  CAS  PubMed  Google Scholar 

  • Körding KP (2007) Decision theory: what “should” the nervous system do? Science 318:606–610

    Article  PubMed  Google Scholar 

  • Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS ONE 2:e943

    Article  PubMed Central  PubMed  Google Scholar 

  • Lebhardt F, Koch J, Ronacher B (2012) The polarization compass dominates over idiothetic cues in path integration of desert ants. J Exp Biol 215:526–535

    Article  PubMed  Google Scholar 

  • Lebhardt F, Ronacher B (2014) Interactions of the polarization and the sun compass in path integration of desert ants. J Comp Physiol A. doi:10.1007/s00359-00013-00871-00351

    Google Scholar 

  • Merkle T, Wehner R (2009) Repeated training does not improve the path integrator in desert ants. Behav Ecol Sociobiol 63:391–402

    Article  Google Scholar 

  • Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol A 137:63–71

    Article  Google Scholar 

  • Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371

    Article  PubMed  Google Scholar 

  • Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Austr J Zool 53:301–311

    Article  Google Scholar 

  • Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti I. Proportional path integration takes the ant half-way home. J Exp Biol 210:1798–1803

    Article  PubMed  Google Scholar 

  • Narendra A, Cheng K, Wehner R (2007) Acquiring, retaining and integrating memories of the outbound distance in the Australian desert ant Melophorus bagoti. J Exp Biol 210:570–577

    Article  PubMed  Google Scholar 

  • Pfeiffer K, Homberg U (2007) Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 17:960–965

    Article  CAS  PubMed  Google Scholar 

  • Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370

    Article  PubMed  Google Scholar 

  • Ronacher B (2008) Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol News 11:53–62

    Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Article  Google Scholar 

  • Santschi F (1911) Sur le mécanisme de l’orientation chez les fourmis. Revue Suisse Zool 19:303–338

    Google Scholar 

  • Santschi F (1913) Comment s’orientent les fourmis. Revue Suisse Zool 21:347–426

    Google Scholar 

  • Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038

    Article  Google Scholar 

  • Schultheiss P, Nooten SS (2013) Foraging patterns and strategies in an Australian desert ant. Austral Ecol 38:942–951. doi:10.1111/aec.12037

    Article  Google Scholar 

  • Schwarz S, Albert L, Wystrach A, Cheng K (2011a) Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. J Exp Biol 214:901–906

    Article  PubMed  Google Scholar 

  • Schwarz S, Wystrach A, Cheng K (2011b) A new navigational mechanism mediated by ant ocelli. Biol Lett 7:856–858

    Article  PubMed Central  PubMed  Google Scholar 

  • Ugolini A, Galanti G, Mercatelli L (2013) Do sandhoppers use the skylight polarization as a compass cue? Anim Behav 86:427–434

    Article  Google Scholar 

  • von Frisch K (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften 35:38–43

    Article  Google Scholar 

  • von Frisch K (1949) Die polarisation des himmelslichtes als orientierender faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Article  CAS  PubMed  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Belknap, Cambridge

    Google Scholar 

  • von Saint Paul U (1982) Do geese use path integration for walking home? In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 298–307

    Chapter  Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritte Zool 39:103–143

    Google Scholar 

  • Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser Verlag, Basel, pp 145–185

    Chapter  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    Article  CAS  Google Scholar 

  • Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96

    Google Scholar 

  • Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Nat Acad Sci USA 103:12575–12579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30

    Chapter  Google Scholar 

  • Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79

    Article  CAS  PubMed  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967

    Article  CAS  PubMed  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207

    Article  PubMed  Google Scholar 

  • Wolf H (2011) Odometry and insect navigation. J Exp Biol 214:1629–1641

    Article  PubMed  Google Scholar 

  • Wystrach A, Schwarz S (2013) Ants use a predictive mechanism to compensate for passive displacements by wind. Curr Biol 23:R1083–R1085. doi:10.1016/j.cub.2013.1010.1072

    Article  CAS  PubMed  Google Scholar 

  • Wystrach A, Schwarz S, Baniel A, Cheng K (2013) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B-Biol Sci 280:20131677

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for helpful comments, Martin Whiting for providing us photospectrometric measurements, the Centre for Appropriate Technology for letting us work on their grounds and for providing storage space, and the CSIRO at Alice Springs for letting us rent a house and providing some administrative help. Funding for the work came from the Australian Research Council (Discovery Project Grant DP110100608) and from Macquarie University (postgraduate awards to AW, SS, PS).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

359_2014_899_MOESM1_ESM.doc

Supplemental Fig. 1. The distribution of ants’ headings in the high UV-blocking box (left) and in the high UV-blocking box with a portion of the sky not containing the sun mirrored (right). The red arrows show the mean vector, with the rim of the circles indicating a vector length of 1. The centre of the small open circles indicate the 95 % confidence intervals about the mean direction. The black triangle indicates the feeder-nest direction. The numbers outside the histograms indicate the number of ants represented by a bar reaching the rim of the circle. The numbers inside the histograms (n’s) indicate the number of ants tested in each condition (DOC 32 kb)

Supplementary material 2 (EPS 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wystrach, A., Schwarz, S., Schultheiss, P. et al. Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti . J Comp Physiol A 200, 591–601 (2014). https://doi.org/10.1007/s00359-014-0899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0899-x

Keywords

Navigation