Skip to main content
Log in

A physiological analysis of color vision in batoid elasmobranchs

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The potential for color vision in elasmobranchs has been studied in detail; however, a high degree of variation exists among the group. Evidence for ultraviolet (UV) vision is lacking, despite the presence of UV vision in every other vertebrate class. An integrative physiological approach was used to investigate color and ultraviolet vision in cownose rays and yellow stingrays, two batoids that inhabit different spectral environments. Both species had peaks in UV, short, medium, and long wavelength spectral regions in dark-, light-, and chromatic-adapted electroretinograms. Although no UV cones were found with microspectrophotometric analysis, both rays had multiple cone visual pigments with λ max at 470 and 551 nm in cownose rays (Rhinoptera bonasus) and 475, 533, and 562 nm in yellow stingrays (Urobatis jamaicensis). The same analysis demonstrated that both species had rod λ max at 500 and 499 nm, respectively. The lens and cornea of cownose rays maximally transmitted wavelengths greater than 350 nm and greater than 376 nm in yellow stingrays. These results support the potential for color vision in these species and future investigations should reveal the extent to which color discrimination is significant in a behavioral context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DW:

Disc width

ERG:

Electroretinogram

FWHM:

Full width at half maximum

LWS:

Long wavelength sensitive pigment

MSP:

Microspectrophotometry

MWS:

Medium wavelength sensitive pigment

SWS:

Short wavelength sensitive pigment

T 0.5 :

Wavelength at 0.5 normalized transmittance

UV:

Ultraviolet

λ max :

Wavelength of maximum absorbance

References

  • Ajemian MJ, Powers SP (2012) Habitat-specific feeding by cownose rays (Rhinoptera bonasus) of the northern Gulf of Mexico. Environ Biol Fish 95:79–97

    Article  Google Scholar 

  • Allen E, Fernald R (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni. J Comp Physiol A 157:247–253

    Article  PubMed  CAS  Google Scholar 

  • Barlow R Jr (1985) Spectral sensitivity of the Japanese dace electroretinogram. In: Fein A, Levine J (eds) The visual system. Alan R Liss, Inc., New York, pp 57–60

    Google Scholar 

  • Bedore CN (2013) Visual and electrosensory ecology of batoid elasmobranchs. Dissertation, Florida Atlantic University

  • Bowmaker JK, Thorpe A, Douglas RH (1991) Ultraviolet-sensitive cones in the goldfish. Vis Res 31:349–352

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnova OG (1994) Visual pigments and the photic environment: the cottoid fish of Lake Baikal. Vis Res 34:591–605

    Article  PubMed  CAS  Google Scholar 

  • Bridges CDB (1965) The groupings of fish visual pigments about preferred positions in the spectrum. Vis Res 5:223–228

    Article  CAS  Google Scholar 

  • Burkhardt D (1966) The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vis Res 6:517–532

    Article  PubMed  CAS  Google Scholar 

  • Cheney KL, Skogh C, Hart NS, Marshall NJ (2009) Mimicry, colour forms and spectral sensitivity of the bluestriped fangblenny, Plagiotremus rhinorhynchos. Proc R Soc Lond B Biol Sci 276:1565–1573

    Article  Google Scholar 

  • Chiao C–C, Cronin TW, Marshall NJ (2000) Eye design and color signaling in a stomatopod crustacean Gonodactylus smithii. Brain Behav Evol 56:107–122

    Article  PubMed  CAS  Google Scholar 

  • Clark E (1963) The maintenance of sharks in captivity, with a report on their instrumental conditioning. In: Gilbert PW (ed) Sharks and survival. D.C. Heath, Boston

    Google Scholar 

  • Cohen JL, Gruber SH (1977) Spectral sensitivity and Purkinje shift in the retina of the lemon shark, Negaprion brevirostris (Poey). Vis Res 17:787–792

    Article  PubMed  CAS  Google Scholar 

  • Cohen JL, Gruber SH (1985) Spectral input to lemon shark (Negaprion brevirostris) ganglion cells. J Comp Physiol A 156:579–586

    Article  Google Scholar 

  • Cohen JL, Hueter RE, Organisciak DT (1990) The presence of a porphyropsin-based visual pigment in the juvenile lemon shark (Negaprion brevirostris). Vis Res 30:1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Collin SP, Trezise AEO (2004) The origins of colour vision in vertebrates. Clin Exp Optom 87:217–233

    Article  PubMed  Google Scholar 

  • Collins AB, Heupel MR, Hueter RE, Motta PJ (2007a) Residence and movement patterns of cownose rays Rhinoptera bonasus within a southwest Florida estuary. J Fish Biol 71:1159–1178

    Article  Google Scholar 

  • Collins AB, Heupel MR, Hueter RE, Motta PJ (2007b) Hard prey specialists or opportunistic generalists? An examination of the diet of the cownose rays Rhinoptera bonasus. Mar Freshw Res 58:135–144

    Article  Google Scholar 

  • Collins AB, Heupel MR, Simpendorfer CA (2008) Spatial distribution and long-term movement patterns of cownose rays Rhinoptera bonasus within an estuarine river. Estuar Coasts 31:1174–1183

    Article  Google Scholar 

  • Compagno LJV, Last PR (1999) FAO species identification guide for fishery purposes. In: Carpenter KE, Niem VH (eds) The living marine resources of the Western Central Pacific, vol 2. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, Rome

  • Dearry A, Barlow Jr. RB (1987) Circadian rhythms in the green sunfish retina. J Gen Physiol 89:745–770

    Article  PubMed  CAS  Google Scholar 

  • Douglas RH, McGuigan CM (1989) The spectral transmission of freshwater teleost ocular media- an interspecific comparison and a guide to potential ultraviolet sensitivity. Vis Res 29:871–879

    Article  PubMed  CAS  Google Scholar 

  • Fahy DP (2004) Diel activity patterns, space utilization, seasonal distribution and population structure of the yellow stingray, Urobatis jamaicensis (Cuvier, 1817) in South Florida with comments on reproduction. MSc Thesis, Nova Southeastern University

  • Frank TM, Porter M, Cronin TW (2009) Spectral sensitivity, visual pigments and screening pigments in two life history stages of the ontogenetic migrator Gnathophausia ingens. J Mar Biol Assoc UK 89:119–129

    Article  CAS  Google Scholar 

  • Griebel U, Schmid A (1992) Color vision in the California sea lion (Zalophus californianus). Vis Res 32:477–482

    Article  PubMed  CAS  Google Scholar 

  • Griebel U, Schmid A (2002) Spectral sensitivity and color vision in the bottlenose dolphin (Tursiops truncatus). Mar Freshw Behav Physiol 35:129–137

    Article  Google Scholar 

  • Gruber SH (1975) Duplex vision in the elasmobranchs: histological, electrophysiological and psychophysical evidence. In: Ali MA (ed) Vision in fishes: new approaches in research. Plenum Press, New York, pp 525–540

    Chapter  Google Scholar 

  • Gruber SH, Hamasaki DI, Bridges CDB (1963) Cones in the retina of the lemon shark (Negaprion brevirostris). Vis Res 3:397–399

    Article  Google Scholar 

  • Gruber SH, Loew ER, McFarland WN (1991) Rod and cone pigments of the Atlantic guitarfish, Rhinobatos lentiginosus Garman. J Exp Zool Suppl 5:85–87

    Google Scholar 

  • Hamasaki DI, Gruber SH (1965) The photoreceptors of the nurse shark, Ginglymostoma cirratum and the stingray, Dasyatis sayi. Bull Mar Sci 15:1051–1059

    Google Scholar 

  • Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004) Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol 207:4587–4594

    Article  PubMed  Google Scholar 

  • Hart NS, Theiss SM, Harahush BK, Collin SP (2011) Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98:193–201

    Article  PubMed  CAS  Google Scholar 

  • Hazlett BA (1979) The meral spot of Gonodactylus oerstedii Hansen as a visual stimulus (Stomatopoda, Gonodactylidae). Crustaceana 36:196–198

    Article  Google Scholar 

  • Jacobs GH (1981) Comparative color vision. Academic, New York

    Google Scholar 

  • Jacobs GH, Deegan JF II, Neitz J, Crognale MA, Neitz M (1993) Photopigments and color vision in the nocturnal monkey, Aotus. Vis Res 33:1773–1783

    Article  PubMed  CAS  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Kelber A, Roth LS (2006) Nocturnal colour vision- not as rare as we might think. J Exp Biol 209:781–788

    Article  PubMed  Google Scholar 

  • Last PR, Stevens JD (1994) Sharks and rays of Australia. CSIRO, Australia

    Google Scholar 

  • Levine JS, MacNichol EF Jr (1982) Color vision in fishes. Sci Am 246:108–117

    Google Scholar 

  • Lisney TJ, Theiss SM, Collin SP, Hart NS (2012) Vision in elasmobranchs and their relatives: 21st century advances. J Fish Biol 80:2024–2054

    Article  PubMed  CAS  Google Scholar 

  • Loew ER (1994) A third, ultraviolet-sensitive, photopigment in the Tokay gecko, Gekko gecko. Vis Res 34:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Loew ER, Lythgoe JN (1978) The ecology of cone pigments in teleost fishes. Vis Res 18:715–722

    Article  PubMed  CAS  Google Scholar 

  • Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943

    Article  Google Scholar 

  • Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular media transmission and visual pigments. Copeia 3:433–454

    Article  Google Scholar 

  • Lythgoe JN (1972) The adaptation of visual pigments to their photic environment. In: Dartnall HJA (ed) Handbook of sensory physiology, Vol. VII/1. Springer, Berlin, Heidelberg, New York, pp 566–603

  • Lythgoe JN, Muntz WRA, Partridge JC, Shand J, Williams DM (1994) The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol A 174:461–467

    Article  Google Scholar 

  • Marshall NJ, Vorobyev M (2003) The design of color signals and color vision in fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York

    Google Scholar 

  • Marshall NJ, Jones JP, Cronin TW (1996) Behavioural evidence for colour vision in stomatopod crustaceans. J Comp Physiol A 179:473–481

    Article  Google Scholar 

  • McComb DM, Kajiura SM (2008) Visual fields of four batoid fishes: a comparative study. J Exp Biol 211:482–490

    Article  PubMed  Google Scholar 

  • McComb DM, Frank TM, Hueter RE, Kajiura SM (2010) Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments. Physiol Biochem Zool 83:299–307

    PubMed  Google Scholar 

  • McEachren JD, de Carvahlo MR (2002) FAO species identification guide for fishery purposes. In: Carpenter KE (ed) The living marine resources of the western central Atlantic, vol 1. Introduction, Molluscs, Crustaceans, Hagfishes, Sharks, Batoid Fishes and Chimaeras. FAO, Rome

  • Muntz WRA, Church E, Dartnall HJA (1973) Visual pigment of the freshwater stingray, Paratrygon motoro. Nature 246:517

    Article  PubMed  CAS  Google Scholar 

  • Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vis Res 13:1829–1874

    Article  PubMed  CAS  Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) The visual system in vertebrates. Handbook of sensory physiology, vol VII/5. Springer, Berlin, Heidelberg, New York, pp 193–274

  • Neer JA, Thompson BA (2005) Life history of the cownose ray, Rhinoptera bonasus, in the northern Gulf of Mexico, with comments on geographic variability in life history traits. Environ Biol Fish 73:321–331

    Article  Google Scholar 

  • Nelson PA, Kajiura SM, Losey GS (2003) Exposure to solar radiation may increase ocular UV-filtering in the juvenile scalloped hammerhead shark, Sphyrna lewini. Mar Biol 142:53–56

    Google Scholar 

  • O’Gower AK, Mathewson RF (1967) Spectral sensitivity and flicker fusion frequency of the lemon shark, Negaprion brevirostris. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates, and rays. Johns Hopkins Press, Baltimore, pp 433–446

    Google Scholar 

  • Orth RJ (1975) Destruction of eelgrass, Zostera marina, by the cownose ray, Rhinoptera bonasus, in the Chesapeake Bay. Chesap Sci 16:205–208

    Article  Google Scholar 

  • Partridge JC, Cuthill IC (2010) Animal behaviour: ultraviolet fish faces. Curr Biol 20:R318–R320

    Article  PubMed  CAS  Google Scholar 

  • Ripps H, Dowling JE (1991) Structural features and adaptive properties of photoreceptors in the skate retina. J Exp Zool Suppl 5:46–54

    Google Scholar 

  • Schultze M (1866) Zur anatomie und physiologie der retina. Arch mikr Anat 2:175–286

    Article  Google Scholar 

  • Siebeck UE (2004) Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim Behav 68:273–282

    Article  Google Scholar 

  • Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish-can coral reef fish see ultraviolet light? Vis Res 41:133–149

    Article  PubMed  CAS  Google Scholar 

  • Siebeck UE, Wallis GM, Litherland L (2008) Colour vision in coral reef fish. J Exp Biol 211:354–360

    Article  PubMed  CAS  Google Scholar 

  • Siebeck UE, Parker AN, Sprenger D, Mäthger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410

    Article  PubMed  CAS  Google Scholar 

  • Smith JW, Merriner JV (1985) Food habits and feeding behavior of the cownose ray, Rhinoptera bonasus, in Chesapeake Bay. Estuaries 8:305–310

    Article  Google Scholar 

  • Smith JW, Merriner JV (1987) Age and growth, movements and distribution of the cownose ray, Rhinoptera bonasus, in Chesapeake Bay. Estuaries 10:153–164

    Article  Google Scholar 

  • Stell WK (1972) The structure and morphologic relations of rods and cones in the retina of the spiny dogfish, Squalus. Comp Biochem Physiol 42A:141–151

    Article  Google Scholar 

  • Tester AL, Kato S (1966) Visual target discrimination in blacktip sharks (Carcharhinus melanopterus) and grey sharks (C. menisorrah). Pac Sci 20:461–471

    Google Scholar 

  • Theiss SM, Lisney TJ, Collin SP, Hart NS (2007) Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Muller & Henle, 1814. J Comp Physiol A 193:67–79

    Article  Google Scholar 

  • Toyoda JI, Saito T, Kondo H (1978) Three types of horizontal cells in the stingray retina: their morphology and physiology. J Comp Neurol 179:569–579

    Article  PubMed  CAS  Google Scholar 

  • Van-Eyk SM, Siebeck UE, Champ CM, Marshall J, Hart NS (2011) Behavioural evidence for colour vision in an elasmobranch. J Exp Biol 214:4186–4192

    Article  PubMed  Google Scholar 

  • von Kries J (1894) Über den Einfluss der Adaptation auf Licht und Farbenempfindung und über die Funktion der Stäbchen. Ber Naturforsch Ges. Freiburg 9:61–70

    Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner, New York

    Book  Google Scholar 

  • Ward-Paige CA, Pattengill-Semmens C, Myers RA, Lotze HK (2011) Spatial and temporal trends in yellow stingray abundance: evidence from diver surveys. Environ Biol Fish 90:263–276

    Article  Google Scholar 

  • Wartzok D, McCormick MG (1978) Color discrimination by a Bering Sea spotted seal, Phoca largha. Vis Res 18:781–784

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky P (1968) The effect of chromatic adaptation on color sensitivity of the carp electroretinogram. Vis Res 8:823–837

    Article  PubMed  CAS  Google Scholar 

  • Zigman S (1971) Eye lens color: formation and function. Science 171:807–809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the FAU Elasmobranch Research Laboratory, J. DelBene, J. Gardiner, and J. Morris for collection, husbandry, and technical support, and N. Hart, C. Luer, A. Stamper, R. Brill, A. Horodysky, D. Fahy, and A. Henningson for logistical support and advice. Funding was awarded to CNB by the American Elasmobranch Society Student Research Award and Mollet Elasmobranch Research Award, Sigma Xi Grants-in-Aid of Research, and FAU Graduate College Newell Doctoral Fellowship. All experiments were conducted in accordance with Institutional Animal Care and Use Committee (IACUC) approved protocols from Florida Atlantic University (A09-25, A12-11, A12-33) and Mote Marine Laboratory (12-09-SK1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine N. Bedore.

Additional information

Experiments comply with the current laws of the country (USA) in which they were performed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedore, C.N., Loew, E.R., Frank, T.M. et al. A physiological analysis of color vision in batoid elasmobranchs. J Comp Physiol A 199, 1129–1141 (2013). https://doi.org/10.1007/s00359-013-0855-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0855-1

Keywords

Navigation