Journal of Comparative Physiology A

, Volume 199, Issue 12, pp 1129–1141

A physiological analysis of color vision in batoid elasmobranchs

  • Christine N. Bedore
  • Ellis R. Loew
  • Tamara M. Frank
  • Robert E. Hueter
  • D. Michelle McComb
  • Stephen M. Kajiura
Original Paper

DOI: 10.1007/s00359-013-0855-1

Cite this article as:
Bedore, C.N., Loew, E.R., Frank, T.M. et al. J Comp Physiol A (2013) 199: 1129. doi:10.1007/s00359-013-0855-1

Abstract

The potential for color vision in elasmobranchs has been studied in detail; however, a high degree of variation exists among the group. Evidence for ultraviolet (UV) vision is lacking, despite the presence of UV vision in every other vertebrate class. An integrative physiological approach was used to investigate color and ultraviolet vision in cownose rays and yellow stingrays, two batoids that inhabit different spectral environments. Both species had peaks in UV, short, medium, and long wavelength spectral regions in dark-, light-, and chromatic-adapted electroretinograms. Although no UV cones were found with microspectrophotometric analysis, both rays had multiple cone visual pigments with λmax at 470 and 551 nm in cownose rays (Rhinoptera bonasus) and 475, 533, and 562 nm in yellow stingrays (Urobatis jamaicensis). The same analysis demonstrated that both species had rod λmax at 500 and 499 nm, respectively. The lens and cornea of cownose rays maximally transmitted wavelengths greater than 350 nm and greater than 376 nm in yellow stingrays. These results support the potential for color vision in these species and future investigations should reveal the extent to which color discrimination is significant in a behavioral context.

Keywords

Elasmobranch Batoid Color vision Sensory ecology Ultraviolet vision 

Abbreviations

DW

Disc width

ERG

Electroretinogram

FWHM

Full width at half maximum

LWS

Long wavelength sensitive pigment

MSP

Microspectrophotometry

MWS

Medium wavelength sensitive pigment

SWS

Short wavelength sensitive pigment

T0.5

Wavelength at 0.5 normalized transmittance

UV

Ultraviolet

λmax

Wavelength of maximum absorbance

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christine N. Bedore
    • 1
    • 6
  • Ellis R. Loew
    • 2
  • Tamara M. Frank
    • 3
  • Robert E. Hueter
    • 4
  • D. Michelle McComb
    • 5
  • Stephen M. Kajiura
    • 1
  1. 1.Department of Biological SciencesFlorida Atlantic UniversityBoca RatonUSA
  2. 2.College of Veterinary MedicineCornell UniversityIthacaUSA
  3. 3.Oceanographic CenterNova Southeastern UniversityDania BeachUSA
  4. 4.Center for Shark ResearchMote Marine LaboratorySarasotaUSA
  5. 5.Ocean ClassroomsBoulderUSA
  6. 6.Biology DepartmentDuke UniversityDurhamUSA

Personalised recommendations