Journal of Comparative Physiology A

, Volume 199, Issue 12, pp 1129–1141 | Cite as

A physiological analysis of color vision in batoid elasmobranchs

  • Christine N. Bedore
  • Ellis R. Loew
  • Tamara M. Frank
  • Robert E. Hueter
  • D. Michelle McComb
  • Stephen M. Kajiura
Original Paper

Abstract

The potential for color vision in elasmobranchs has been studied in detail; however, a high degree of variation exists among the group. Evidence for ultraviolet (UV) vision is lacking, despite the presence of UV vision in every other vertebrate class. An integrative physiological approach was used to investigate color and ultraviolet vision in cownose rays and yellow stingrays, two batoids that inhabit different spectral environments. Both species had peaks in UV, short, medium, and long wavelength spectral regions in dark-, light-, and chromatic-adapted electroretinograms. Although no UV cones were found with microspectrophotometric analysis, both rays had multiple cone visual pigments with λmax at 470 and 551 nm in cownose rays (Rhinoptera bonasus) and 475, 533, and 562 nm in yellow stingrays (Urobatis jamaicensis). The same analysis demonstrated that both species had rod λmax at 500 and 499 nm, respectively. The lens and cornea of cownose rays maximally transmitted wavelengths greater than 350 nm and greater than 376 nm in yellow stingrays. These results support the potential for color vision in these species and future investigations should reveal the extent to which color discrimination is significant in a behavioral context.

Keywords

Elasmobranch Batoid Color vision Sensory ecology Ultraviolet vision 

Abbreviations

DW

Disc width

ERG

Electroretinogram

FWHM

Full width at half maximum

LWS

Long wavelength sensitive pigment

MSP

Microspectrophotometry

MWS

Medium wavelength sensitive pigment

SWS

Short wavelength sensitive pigment

T0.5

Wavelength at 0.5 normalized transmittance

UV

Ultraviolet

λmax

Wavelength of maximum absorbance

Notes

Acknowledgments

The authors thank the FAU Elasmobranch Research Laboratory, J. DelBene, J. Gardiner, and J. Morris for collection, husbandry, and technical support, and N. Hart, C. Luer, A. Stamper, R. Brill, A. Horodysky, D. Fahy, and A. Henningson for logistical support and advice. Funding was awarded to CNB by the American Elasmobranch Society Student Research Award and Mollet Elasmobranch Research Award, Sigma Xi Grants-in-Aid of Research, and FAU Graduate College Newell Doctoral Fellowship. All experiments were conducted in accordance with Institutional Animal Care and Use Committee (IACUC) approved protocols from Florida Atlantic University (A09-25, A12-11, A12-33) and Mote Marine Laboratory (12-09-SK1).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ajemian MJ, Powers SP (2012) Habitat-specific feeding by cownose rays (Rhinoptera bonasus) of the northern Gulf of Mexico. Environ Biol Fish 95:79–97CrossRefGoogle Scholar
  2. Allen E, Fernald R (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni. J Comp Physiol A 157:247–253PubMedCrossRefGoogle Scholar
  3. Barlow R Jr (1985) Spectral sensitivity of the Japanese dace electroretinogram. In: Fein A, Levine J (eds) The visual system. Alan R Liss, Inc., New York, pp 57–60Google Scholar
  4. Bedore CN (2013) Visual and electrosensory ecology of batoid elasmobranchs. Dissertation, Florida Atlantic UniversityGoogle Scholar
  5. Bowmaker JK, Thorpe A, Douglas RH (1991) Ultraviolet-sensitive cones in the goldfish. Vis Res 31:349–352PubMedCrossRefGoogle Scholar
  6. Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnova OG (1994) Visual pigments and the photic environment: the cottoid fish of Lake Baikal. Vis Res 34:591–605PubMedCrossRefGoogle Scholar
  7. Bridges CDB (1965) The groupings of fish visual pigments about preferred positions in the spectrum. Vis Res 5:223–228CrossRefGoogle Scholar
  8. Burkhardt D (1966) The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vis Res 6:517–532PubMedCrossRefGoogle Scholar
  9. Cheney KL, Skogh C, Hart NS, Marshall NJ (2009) Mimicry, colour forms and spectral sensitivity of the bluestriped fangblenny, Plagiotremus rhinorhynchos. Proc R Soc Lond B Biol Sci 276:1565–1573CrossRefGoogle Scholar
  10. Chiao C–C, Cronin TW, Marshall NJ (2000) Eye design and color signaling in a stomatopod crustacean Gonodactylus smithii. Brain Behav Evol 56:107–122PubMedCrossRefGoogle Scholar
  11. Clark E (1963) The maintenance of sharks in captivity, with a report on their instrumental conditioning. In: Gilbert PW (ed) Sharks and survival. D.C. Heath, BostonGoogle Scholar
  12. Cohen JL, Gruber SH (1977) Spectral sensitivity and Purkinje shift in the retina of the lemon shark, Negaprion brevirostris (Poey). Vis Res 17:787–792PubMedCrossRefGoogle Scholar
  13. Cohen JL, Gruber SH (1985) Spectral input to lemon shark (Negaprion brevirostris) ganglion cells. J Comp Physiol A 156:579–586CrossRefGoogle Scholar
  14. Cohen JL, Hueter RE, Organisciak DT (1990) The presence of a porphyropsin-based visual pigment in the juvenile lemon shark (Negaprion brevirostris). Vis Res 30:1949–1953PubMedCrossRefGoogle Scholar
  15. Collin SP, Trezise AEO (2004) The origins of colour vision in vertebrates. Clin Exp Optom 87:217–233PubMedCrossRefGoogle Scholar
  16. Collins AB, Heupel MR, Hueter RE, Motta PJ (2007a) Residence and movement patterns of cownose rays Rhinoptera bonasus within a southwest Florida estuary. J Fish Biol 71:1159–1178CrossRefGoogle Scholar
  17. Collins AB, Heupel MR, Hueter RE, Motta PJ (2007b) Hard prey specialists or opportunistic generalists? An examination of the diet of the cownose rays Rhinoptera bonasus. Mar Freshw Res 58:135–144CrossRefGoogle Scholar
  18. Collins AB, Heupel MR, Simpendorfer CA (2008) Spatial distribution and long-term movement patterns of cownose rays Rhinoptera bonasus within an estuarine river. Estuar Coasts 31:1174–1183CrossRefGoogle Scholar
  19. Compagno LJV, Last PR (1999) FAO species identification guide for fishery purposes. In: Carpenter KE, Niem VH (eds) The living marine resources of the Western Central Pacific, vol 2. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, RomeGoogle Scholar
  20. Dearry A, Barlow Jr. RB (1987) Circadian rhythms in the green sunfish retina. J Gen Physiol 89:745–770PubMedCrossRefGoogle Scholar
  21. Douglas RH, McGuigan CM (1989) The spectral transmission of freshwater teleost ocular media- an interspecific comparison and a guide to potential ultraviolet sensitivity. Vis Res 29:871–879PubMedCrossRefGoogle Scholar
  22. Fahy DP (2004) Diel activity patterns, space utilization, seasonal distribution and population structure of the yellow stingray, Urobatis jamaicensis (Cuvier, 1817) in South Florida with comments on reproduction. MSc Thesis, Nova Southeastern UniversityGoogle Scholar
  23. Frank TM, Porter M, Cronin TW (2009) Spectral sensitivity, visual pigments and screening pigments in two life history stages of the ontogenetic migrator Gnathophausia ingens. J Mar Biol Assoc UK 89:119–129CrossRefGoogle Scholar
  24. Griebel U, Schmid A (1992) Color vision in the California sea lion (Zalophus californianus). Vis Res 32:477–482PubMedCrossRefGoogle Scholar
  25. Griebel U, Schmid A (2002) Spectral sensitivity and color vision in the bottlenose dolphin (Tursiops truncatus). Mar Freshw Behav Physiol 35:129–137CrossRefGoogle Scholar
  26. Gruber SH (1975) Duplex vision in the elasmobranchs: histological, electrophysiological and psychophysical evidence. In: Ali MA (ed) Vision in fishes: new approaches in research. Plenum Press, New York, pp 525–540CrossRefGoogle Scholar
  27. Gruber SH, Hamasaki DI, Bridges CDB (1963) Cones in the retina of the lemon shark (Negaprion brevirostris). Vis Res 3:397–399CrossRefGoogle Scholar
  28. Gruber SH, Loew ER, McFarland WN (1991) Rod and cone pigments of the Atlantic guitarfish, Rhinobatos lentiginosus Garman. J Exp Zool Suppl 5:85–87Google Scholar
  29. Hamasaki DI, Gruber SH (1965) The photoreceptors of the nurse shark, Ginglymostoma cirratum and the stingray, Dasyatis sayi. Bull Mar Sci 15:1051–1059Google Scholar
  30. Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004) Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol 207:4587–4594PubMedCrossRefGoogle Scholar
  31. Hart NS, Theiss SM, Harahush BK, Collin SP (2011) Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98:193–201PubMedCrossRefGoogle Scholar
  32. Hazlett BA (1979) The meral spot of Gonodactylus oerstedii Hansen as a visual stimulus (Stomatopoda, Gonodactylidae). Crustaceana 36:196–198CrossRefGoogle Scholar
  33. Jacobs GH (1981) Comparative color vision. Academic, New YorkGoogle Scholar
  34. Jacobs GH, Deegan JF II, Neitz J, Crognale MA, Neitz M (1993) Photopigments and color vision in the nocturnal monkey, Aotus. Vis Res 33:1773–1783PubMedCrossRefGoogle Scholar
  35. Jerlov NG (1976) Marine optics. Elsevier, AmsterdamGoogle Scholar
  36. Kelber A, Roth LS (2006) Nocturnal colour vision- not as rare as we might think. J Exp Biol 209:781–788PubMedCrossRefGoogle Scholar
  37. Last PR, Stevens JD (1994) Sharks and rays of Australia. CSIRO, AustraliaGoogle Scholar
  38. Levine JS, MacNichol EF Jr (1982) Color vision in fishes. Sci Am 246:108–117Google Scholar
  39. Lisney TJ, Theiss SM, Collin SP, Hart NS (2012) Vision in elasmobranchs and their relatives: 21st century advances. J Fish Biol 80:2024–2054PubMedCrossRefGoogle Scholar
  40. Loew ER (1994) A third, ultraviolet-sensitive, photopigment in the Tokay gecko, Gekko gecko. Vis Res 34:1427–1432PubMedCrossRefGoogle Scholar
  41. Loew ER, Lythgoe JN (1978) The ecology of cone pigments in teleost fishes. Vis Res 18:715–722PubMedCrossRefGoogle Scholar
  42. Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943CrossRefGoogle Scholar
  43. Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular media transmission and visual pigments. Copeia 3:433–454CrossRefGoogle Scholar
  44. Lythgoe JN (1972) The adaptation of visual pigments to their photic environment. In: Dartnall HJA (ed) Handbook of sensory physiology, Vol. VII/1. Springer, Berlin, Heidelberg, New York, pp 566–603Google Scholar
  45. Lythgoe JN, Muntz WRA, Partridge JC, Shand J, Williams DM (1994) The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol A 174:461–467CrossRefGoogle Scholar
  46. Marshall NJ, Vorobyev M (2003) The design of color signals and color vision in fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New YorkGoogle Scholar
  47. Marshall NJ, Jones JP, Cronin TW (1996) Behavioural evidence for colour vision in stomatopod crustaceans. J Comp Physiol A 179:473–481CrossRefGoogle Scholar
  48. McComb DM, Kajiura SM (2008) Visual fields of four batoid fishes: a comparative study. J Exp Biol 211:482–490PubMedCrossRefGoogle Scholar
  49. McComb DM, Frank TM, Hueter RE, Kajiura SM (2010) Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments. Physiol Biochem Zool 83:299–307PubMedGoogle Scholar
  50. McEachren JD, de Carvahlo MR (2002) FAO species identification guide for fishery purposes. In: Carpenter KE (ed) The living marine resources of the western central Atlantic, vol 1. Introduction, Molluscs, Crustaceans, Hagfishes, Sharks, Batoid Fishes and Chimaeras. FAO, RomeGoogle Scholar
  51. Muntz WRA, Church E, Dartnall HJA (1973) Visual pigment of the freshwater stingray, Paratrygon motoro. Nature 246:517PubMedCrossRefGoogle Scholar
  52. Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vis Res 13:1829–1874PubMedCrossRefGoogle Scholar
  53. Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) The visual system in vertebrates. Handbook of sensory physiology, vol VII/5. Springer, Berlin, Heidelberg, New York, pp 193–274Google Scholar
  54. Neer JA, Thompson BA (2005) Life history of the cownose ray, Rhinoptera bonasus, in the northern Gulf of Mexico, with comments on geographic variability in life history traits. Environ Biol Fish 73:321–331CrossRefGoogle Scholar
  55. Nelson PA, Kajiura SM, Losey GS (2003) Exposure to solar radiation may increase ocular UV-filtering in the juvenile scalloped hammerhead shark, Sphyrna lewini. Mar Biol 142:53–56Google Scholar
  56. O’Gower AK, Mathewson RF (1967) Spectral sensitivity and flicker fusion frequency of the lemon shark, Negaprion brevirostris. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates, and rays. Johns Hopkins Press, Baltimore, pp 433–446Google Scholar
  57. Orth RJ (1975) Destruction of eelgrass, Zostera marina, by the cownose ray, Rhinoptera bonasus, in the Chesapeake Bay. Chesap Sci 16:205–208CrossRefGoogle Scholar
  58. Partridge JC, Cuthill IC (2010) Animal behaviour: ultraviolet fish faces. Curr Biol 20:R318–R320PubMedCrossRefGoogle Scholar
  59. Ripps H, Dowling JE (1991) Structural features and adaptive properties of photoreceptors in the skate retina. J Exp Zool Suppl 5:46–54Google Scholar
  60. Schultze M (1866) Zur anatomie und physiologie der retina. Arch mikr Anat 2:175–286CrossRefGoogle Scholar
  61. Siebeck UE (2004) Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim Behav 68:273–282CrossRefGoogle Scholar
  62. Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish-can coral reef fish see ultraviolet light? Vis Res 41:133–149PubMedCrossRefGoogle Scholar
  63. Siebeck UE, Wallis GM, Litherland L (2008) Colour vision in coral reef fish. J Exp Biol 211:354–360PubMedCrossRefGoogle Scholar
  64. Siebeck UE, Parker AN, Sprenger D, Mäthger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410PubMedCrossRefGoogle Scholar
  65. Smith JW, Merriner JV (1985) Food habits and feeding behavior of the cownose ray, Rhinoptera bonasus, in Chesapeake Bay. Estuaries 8:305–310CrossRefGoogle Scholar
  66. Smith JW, Merriner JV (1987) Age and growth, movements and distribution of the cownose ray, Rhinoptera bonasus, in Chesapeake Bay. Estuaries 10:153–164CrossRefGoogle Scholar
  67. Stell WK (1972) The structure and morphologic relations of rods and cones in the retina of the spiny dogfish, Squalus. Comp Biochem Physiol 42A:141–151CrossRefGoogle Scholar
  68. Tester AL, Kato S (1966) Visual target discrimination in blacktip sharks (Carcharhinus melanopterus) and grey sharks (C. menisorrah). Pac Sci 20:461–471Google Scholar
  69. Theiss SM, Lisney TJ, Collin SP, Hart NS (2007) Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Muller & Henle, 1814. J Comp Physiol A 193:67–79CrossRefGoogle Scholar
  70. Toyoda JI, Saito T, Kondo H (1978) Three types of horizontal cells in the stingray retina: their morphology and physiology. J Comp Neurol 179:569–579PubMedCrossRefGoogle Scholar
  71. Van-Eyk SM, Siebeck UE, Champ CM, Marshall J, Hart NS (2011) Behavioural evidence for colour vision in an elasmobranch. J Exp Biol 214:4186–4192PubMedCrossRefGoogle Scholar
  72. von Kries J (1894) Über den Einfluss der Adaptation auf Licht und Farbenempfindung und über die Funktion der Stäbchen. Ber Naturforsch Ges. Freiburg 9:61–70Google Scholar
  73. Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner, New YorkCrossRefGoogle Scholar
  74. Ward-Paige CA, Pattengill-Semmens C, Myers RA, Lotze HK (2011) Spatial and temporal trends in yellow stingray abundance: evidence from diver surveys. Environ Biol Fish 90:263–276CrossRefGoogle Scholar
  75. Wartzok D, McCormick MG (1978) Color discrimination by a Bering Sea spotted seal, Phoca largha. Vis Res 18:781–784PubMedCrossRefGoogle Scholar
  76. Witkovsky P (1968) The effect of chromatic adaptation on color sensitivity of the carp electroretinogram. Vis Res 8:823–837PubMedCrossRefGoogle Scholar
  77. Zigman S (1971) Eye lens color: formation and function. Science 171:807–809PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christine N. Bedore
    • 1
    • 6
  • Ellis R. Loew
    • 2
  • Tamara M. Frank
    • 3
  • Robert E. Hueter
    • 4
  • D. Michelle McComb
    • 5
  • Stephen M. Kajiura
    • 1
  1. 1.Department of Biological SciencesFlorida Atlantic UniversityBoca RatonUSA
  2. 2.College of Veterinary MedicineCornell UniversityIthacaUSA
  3. 3.Oceanographic CenterNova Southeastern UniversityDania BeachUSA
  4. 4.Center for Shark ResearchMote Marine LaboratorySarasotaUSA
  5. 5.Ocean ClassroomsBoulderUSA
  6. 6.Biology DepartmentDuke UniversityDurhamUSA

Personalised recommendations