Removing sensory input disrupts spinal locomotor activity in the early postnatal period

Abstract

Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional, leaving the spinal CPG network without its initiating drive. Recent studies have focused on the importance of maintaining sensory stimulation to the limbs of SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network using a neonatal mouse spinal cord preparation where the hindlimbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates into the design of novel therapeutic strategies to treat patients who have suffered a SCI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arvidsson U, Cullheim S, Ulfhake B, Luppi PH, Kitahama K, Jouvet M, Hökfelt T (1994) Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. J Chem Neuroanat 7:3–12. Erratum in: J Chem Neuroanat 7:285–287

    Google Scholar 

  2. Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95

    PubMed  Article  CAS  Google Scholar 

  3. Barthe JY, Clarac F (1997) Modulation of the spinal network for locomotion by substance P in the neonatal rat. Exp Brain Res 115:485–492

    PubMed  Article  CAS  Google Scholar 

  4. Christenson J, Borman A, Lagerback PA, Grillner S (1988) The dorsal cell, one class of primary sensory neurone in the lamprey spinal cord I. Touch, pressure but no nociception—a physiological study. Brain Res 440:1–8

    PubMed  Article  CAS  Google Scholar 

  5. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    PubMed  Article  CAS  Google Scholar 

  6. Cragg JJ, Scott AL, Ramer MS (2010) Depletion of spinal 5-HT accelerates mechanosensory recovery in the deafferented rat spinal cord. Exp Neurol 222:277–284

    PubMed  Article  CAS  Google Scholar 

  7. De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340

    PubMed  Google Scholar 

  8. Díaz-Ríos M, Dombeck D, Webb WW, Harris-Warrick RM (2007) Serotonin modulates dendritic calcium influx in commissural interneurons in the mouse spinal locomotor network. J Neurophysiol 98:2157–2167

    PubMed  Article  Google Scholar 

  9. Dietz V (2010) Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol 6:167–174

    PubMed  Article  Google Scholar 

  10. Dietz V (2011) Neuronal plasticity after a human spinal cord injury: positive and negative effects. Exp Neurol 235:110–115

    PubMed  Article  Google Scholar 

  11. Dorofeev IY, Avelev VD, Shcherbakova NA, Gerasimenko YP (2008) The role of cutaneous afferents in controlling locomotion evoked by epidural stimulation of the spinal cord in decerebrate cats. Neurosci Behav Physiol 38:695–701

    PubMed  Article  Google Scholar 

  12. Dougherty KJ, Kiehn O (2010) Firing and cellular properties of V2a interneurons in the rodent spinal cord. J Neurosci 30:24–37

    PubMed  Article  CAS  Google Scholar 

  13. Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJ, Burdick JW, Roy RR (2008) Training locomotor networks. Brain Res Rev 57:241–254

    PubMed  Article  Google Scholar 

  14. Gabbay H, Delvolvé I, Lev-Tov A (2002) Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord. J Neurophysiol 2:732–739

    Google Scholar 

  15. Gerasimenko Y, Roy RR, Edgerton VR (2008) Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol 209:417–425

    PubMed  Article  Google Scholar 

  16. Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Handbook of physiology. The nervous system. Motor control, section 1, vol. II. American Physiology Society/Wiley-Blackwell, Maryland, pp 1179–1236

  17. Grillner S, Zangger P (1975) How detailed is the central pattern generation for locomotion? Brain Res 88:367–371

    PubMed  Article  CAS  Google Scholar 

  18. Grillner S, Deliagina T, Ekeberg O, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18:270–279

    PubMed  CAS  Google Scholar 

  19. Guertin PA (2009) The mammalian central pattern generator for locomotion. Brain Res Rev 62:45–56

    PubMed  Article  Google Scholar 

  20. Harkema SJ (2007) Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev 57:255–264

    PubMed  Article  Google Scholar 

  21. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947

    PubMed  Article  Google Scholar 

  22. Hayes HB, Chang YH, Hochman S (2009) An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function. J Neurophysiol 101:1114–1122

    PubMed  Article  Google Scholar 

  23. Kiehn O, Kjaerulff O (1996) Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J Neurophysiol 75:1472–1482

    PubMed  CAS  Google Scholar 

  24. Kiehn O, Johnson BR, Raastad M (1996) Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity. Neuroscience 75:263–273

    PubMed  Article  CAS  Google Scholar 

  25. Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A (2001) Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation. J Comput Neurosci 11:183–200

    PubMed  Article  CAS  Google Scholar 

  26. Lavrov I, Courtine G, Dy CJ, van den Brand R, Fong AJ, Gerasimenko Y, Zhong H, Roy RR, Edgerton VR (2008) Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input. J Neurosci 28:7774–7780

    PubMed  Article  CAS  Google Scholar 

  27. Lev-Tov A, Etlin A, Blivis D (2010) Sensory-induced activation of pattern generators in the absence of supraspinal control. Ann N Y Acad Sci 1198:54–62

    PubMed  Article  CAS  Google Scholar 

  28. Lovely RG, Gregor R, Roy RR, Edgerton VR (1986) Effects of training on the recovery of fullweight-bearing stepping in the adult spinal cat. Exp Neurol 92:421–435

    PubMed  Article  CAS  Google Scholar 

  29. Marson L (1989) Evidence for colocalization of substance P and 5-hydroxytryptamine in spinally projecting neurons from the cat medulla oblongata. Neurosci Lett 96:54–59

    PubMed  Article  CAS  Google Scholar 

  30. Marder E (1998) From biophysics to models of network function. Annu Rev Neurosci 21:25–45

    PubMed  Article  CAS  Google Scholar 

  31. Parker D, Bevan S (2007) Modulation of cellular and synaptic variability in the lamprey spinal cord. J Neurophysiol 97:44–56

    PubMed  Article  CAS  Google Scholar 

  32. Parker D, Grillner S (1996) Tachykinin-mediated modulation of sensory neurons, interneurons, and synaptic transmission in the lamprey spinal cord. J Neurophysiol 76:4031–4039

    PubMed  CAS  Google Scholar 

  33. Parker D, Söderberg C, Zotova E, Shupliakov O, Langel U, Bartfai T, Larhammar D, Brodin L, Grillner S (1998) Co-localized neuropeptide Y and GABA have complementary presynaptic effects on sensory synaptic transmission. Eur J Neurosci 10:2856–2870

    PubMed  Article  CAS  Google Scholar 

  34. Piercey MF, Schroeder LA, Folkers K, Xu JC, Horig J (1981) Sensory and motor functions of spinal cord substance P. Science 214:1361–1363

    PubMed  Article  CAS  Google Scholar 

  35. Rossignol S (2006) Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 361:1647–1671

    PubMed  Article  CAS  Google Scholar 

  36. Rossignol S, Frigon A (2011) Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci 34:413–440

    PubMed  Article  CAS  Google Scholar 

  37. Rossignol S, Barrière G, Frigon A, Barthélemy D, Bouyer L, Provencher J, Leblond H, Bernard G (2008) Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions. Brain Res Rev 57:228–240

    PubMed  Article  Google Scholar 

  38. Rossignol S, Frigon A, Barrière G, Martinez M, Barthélemy D, Bouyer L, Bélanger M, Provencher J, Chau C, Brustein E, Barbeau H, Giroux N, Marcoux J, Langlet C, Alluin O (2011) Chapter 16—spinal plasticity in the recovery of locomotion. Prog Brain Res 188:229–241

    PubMed  Article  Google Scholar 

  39. Svensson E, Grillner S, Parker D (2001) Gating and braking of short- and long-term modulatory effects by interactions between colocalized neuromodulators. J Neurosci 21:5984–5992

    PubMed  CAS  Google Scholar 

  40. Thor KB, Hill KM, Harrod C, Helke CJ (1988) Immunohistochemical and biochemical analysis of serotonin and substance P colocalization in the nucleus tractus solitarii and associated afferent ganglia of the rat. Synapse 2:225–231

    PubMed  Article  CAS  Google Scholar 

  41. Thörn Pérez C, Hill RH, El Manira A, Grillner S (2009) Endocannabinoids mediate tachykinin-induced effects in the lamprey locomotor network. J Neurophysiol 102:1358–1365

    PubMed  Article  Google Scholar 

  42. Tysseling VM, Janes L, Imhoff R, Quinlan KA, Lookabaugh B, Ramalingam S, Heckman CJ, Tresch MC (2013) Design and evaluation of a chronic EMG multichannel detection system for long-term recordings of hindlimb muscles in behaving mice. J Electromyogr Kinesiol 23:531–539

    PubMed  Article  Google Scholar 

  43. Ullström M, Parker D, Svensson E, Grillner S (1999) Neuropeptide-mediated facilitation and inhibition of sensory inputs and spinal cord reflexes in the lamprey. J Neurophysiol 81:1730–1740

    PubMed  Google Scholar 

  44. Zar JH (1974) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  45. Zhong G, Díaz-Ríos M, Harris-Warrick RM (2006a) Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. J Neurophysiol 95:1545–1555

    PubMed  Article  CAS  Google Scholar 

  46. Zhong G, Díaz-Ríos M, Harris-Warrick RM (2006b) Intrinsic and functional differences among commissural interneurons in the central pattern generator for locomotion in the neonatal mouse. J Neurosci 26:6509–6517

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Cleland for Spike 2 scripts used in data analysis and to Alex Kwan for Spike 2 scripts used in the generation of the circular plots. We would also like to thank Ernesto Cabezas, Jeidiel De Leon, Marla Rivera Oliver and Nikol Matos Vergara for their helpful comments on the manuscript. We would additionally like the thank the University of Puerto Rico Puerto Rico Institutional Animal Care and Use Committee for the approval of the animal protocols used for the experiments included in this work in accordance with National Institutes of Health guidelines. The present study was supported by the Craig Neilsen Foundation Grant 124554, the Research Centers in Minority Institution at the University of Puerto Rico—Medical Sciences Campus (RCMI-UPR-MSC) Grant G12RR03051 and a Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE) pre-doctoral Grant R25GM061838 to JeanMarie Acevedo-Rosario.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Díaz-Ríos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acevedo, J.M., Díaz-Ríos, M. Removing sensory input disrupts spinal locomotor activity in the early postnatal period. J Comp Physiol A 199, 1105–1116 (2013). https://doi.org/10.1007/s00359-013-0853-3

Download citation

Keywords

  • Central pattern generator
  • Locomotion
  • Mouse
  • Spinal cord
  • Sensory input