Journal of Comparative Physiology A

, Volume 199, Issue 8, pp 723–733 | Cite as

Severe constraints for sound communication in a frog from the South American temperate forest

  • Mario Penna
  • Alicia Plaza
  • Felipe N. Moreno-Gómez
Original Paper


The efficiency of acoustic communication depends on the power generated by the sound source, the quality of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus calcaratus, an anuran from the temperate austral forest, communicates by means of an advertisement call of weak intensity in a sound-attenuating environment. To estimate the range over which these frogs communicate effectively, we conducted measurements of sound level and degradation patterns of propagating advertisement calls in the field, and measurements of auditory thresholds to pure tones and to natural calls in laboratory conditions. The results show that E. calcaratus produces weak advertisement calls of about 72 dB sound pressure level (SPL) at 0.25 m from the caller. The signals are affected by attenuation and degradation patterns as they propagate in their native environment, reaching average values of 61 and 51 dB SPL at 1 and 2 m from the sound source, respectively. Midbrain multi-unit recordings show a relatively low auditory sensitivity, with thresholds of about 58 dB SPL for conspecific calls, which are likely to restrict communication to distances shorter than 2 m, a remarkably short range as compared to other anurans.


Advertisement calls Auditory thresholds Frogs Sound propagation Torus semicircularis 



Sound pressure level


Root mean square


Best threshold of the low-frequency region


Best threshold of the high-frequency region


Center frequency of the high-frequency region


  1. Boatright-Horowitz SI, Horowitz SS, Simmons AM (2000) Patterns of vocal interactions in a bullfrog (Rana catesbeiana) chorus: shared preferential responding to far neighbors. Ethology 106:701–712CrossRefGoogle Scholar
  2. Boistel R, Aubin T, Cloetens P, Langer M, Gillet B, Josset P, Pollet N, Herrel A (2011) Whispering to the deaf: communication by a frog without external vocal sac or tympanum in noisy environments. PLoS ONE 6:e22080PubMedCrossRefGoogle Scholar
  3. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, SunderlandGoogle Scholar
  4. Brumm H (2002) Sound radiation patterns in Nightingale (Luscinia megarhynchos) songs. J Ornithol 143:468–471Google Scholar
  5. Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX (2006) Ultrasonic communication in frogs. Nature 440:333–336PubMedCrossRefGoogle Scholar
  6. Gerhardt HC (1975) Sound pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. J Comp Physiol A 102:1–12CrossRefGoogle Scholar
  7. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. The University of Chicago Press, ChicagoGoogle Scholar
  8. Hubl L, Schneider H (1979) Temperature and auditory thresholds: bioacoustic studies of the frogs Rana r. ridibunda, Hyla a. arborea and Hyla a. savignyi. J Comp Physiol A 130:17–27CrossRefGoogle Scholar
  9. Kime NM, Turner WR, Ryan MJ (2000) The transmission of advertisement calls in Central American frogs. Behav Ecol 11:71–83CrossRefGoogle Scholar
  10. Larsen ON, Dabelsteen T (1990) Directionality of blackbird vocalizations. Implications for vocal communication and its further study. Ornis Scand 21:37–45CrossRefGoogle Scholar
  11. Márquez R, Penna M, Marques P, do Amaral JPS (2005) The advertisement calls of Eupsophus calcaratus and E. roseus (Amphibia, Anura, Leptodactylidae): a quantitative comparison. Herpetol J 15:257–263Google Scholar
  12. McGregor PK (2005) Animal communication networks. Cornwall College, NewquayCrossRefGoogle Scholar
  13. Mohneke R, Schneider H (1979) Effect of temperature upon auditory thresholds in two anuran species, Bombina v. variegata and Alytes o. obstetricans (Amphibia, Discoglossidae). J Comp Physiol A 130:9–16CrossRefGoogle Scholar
  14. Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34CrossRefGoogle Scholar
  15. Naguib M, Shmidt R, Sprau P, Roth T, Flörcke C, Amrhein V (2008) The ecology of vocal signaling: male spacing and communication distance of different song traits in nightingales. Behav Ecol 19:1034–1040CrossRefGoogle Scholar
  16. Narins PM (2001) Ectothermy’s last stand: hearing in the heat and cold. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, WashingtonGoogle Scholar
  17. Narins PM, Hurley DD (1982) The relationship between call intensity and function in the Puerto Rican coqui (Anura: leptodactylidae). Herpetologica 38:287–295Google Scholar
  18. Opazo D, Velásquez N, Veloso A, Penna M (2009) Frequency-modulated vocalizations of Eupsophus queulensis (Anura: cycloramphidae). J Herpetol 43:657–664CrossRefGoogle Scholar
  19. Passmore NI (1981) Sound levels of mating calls of some African frogs. Herpetologica 37:166–171Google Scholar
  20. Patricelli GL, Dantzker MS, Bradbury JW (2007) Differences in acoustic directionality among vocalizations of the male red-winged blackbird (Agelaius phoeniceus) are related to function in communication. Behav Ecol Sociobiol 61:1099–1110CrossRefGoogle Scholar
  21. Penna M (2004) Amplification and spectral changes of vocalizations inside burrows of the frog Eupsophus calcaratus (Leptodactylidae). J Acoust Soc America 116:1254–1260CrossRefGoogle Scholar
  22. Penna M, Márquez R (2007) Amplification and spectral modifications of incoming vocalizations inside burrows of the frog Eupsophus roseus (Leptodactylidae). Bioacoustics 16:245–259CrossRefGoogle Scholar
  23. Penna M, Quispe M (2007) Independence of evoked vocal responses from stimulus direction in burrowing frogs Eupsophus (Leptodactylidae). Ethology 113:313–323CrossRefGoogle Scholar
  24. Penna M, Solís R (1998) Frog call intensities and sound propagation in the South American temperate forest region. Behav Ecol Sociobiol 42:371–381CrossRefGoogle Scholar
  25. Penna M, Veloso A (1990) Vocal diversity in frogs of the South American temperate forest. J Herpetol 24:23–32CrossRefGoogle Scholar
  26. Penna M, Palazzi C, Paolinelli P, Solís R (1990) Midbrain auditory sensitivity in toads of the genus Bufo (Amphibia-Bufonidae) with different vocal repertoires. J Comp Physiol A 167:673–681CrossRefGoogle Scholar
  27. Penna M, Capranica RR, Somers J (1992) Hormone-induced vocal behavior and midbrain auditory responses in the green treefrog, Hyla cinerea. J Comp Physiol A 170:73–82PubMedCrossRefGoogle Scholar
  28. Penna M, Pottstock H, Velásquez N (2005a) Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Anim Behav 70:639–651CrossRefGoogle Scholar
  29. Penna M, Narins PM, Feng A (2005b) Thresholds for evoked vocal responses of Eupsophus emiliopugini (Amphibia, Leptodactylidae). Herpetologica 61:1–8CrossRefGoogle Scholar
  30. Penna M, Márquez R, Crespo EG, Bosch J (2006) Nonoptimal propagation of tonal advertisement calls of midwife toads in Iberian habitats. J Acoust Soc Am 119:1227–1237PubMedCrossRefGoogle Scholar
  31. Penna M, Velásquez N, Solís R (2008) Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae). J Comp Physiol A 194:361–371CrossRefGoogle Scholar
  32. Penna M, Llusia D, Márquez R (2012) Propagation of natural toad calls in a Mediterranean terrestrial environment. J Acoust Soc Am 132:4025–4031PubMedCrossRefGoogle Scholar
  33. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0.
  34. Robisson P (1991) Broadcast distance of the mutual display call in the emperor penguin. Behaviour 119:302–316CrossRefGoogle Scholar
  35. Shy E (1983) The relation of geographical variation in song to habitat characteristics and body size in North American tanagers (Thraupinae: Piranga). Behav Ecol Sociobiol 12:71–76CrossRefGoogle Scholar
  36. Sorjonen J (1986) Song structure and singing strategies in the genus Luscinia in different habitats and geographical areas. Behaviour 98:274–285CrossRefGoogle Scholar
  37. Sueur J, Aubin T, Simonis C (2008) Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18:213–226CrossRefGoogle Scholar
  38. Wells KD, Schwartz JJ (1982) The effect of vegetation on the propagation of calls in the neotropical frog Centrolenella fleischmanni. Herpetologica 38:449–455Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mario Penna
    • 1
  • Alicia Plaza
    • 1
  • Felipe N. Moreno-Gómez
    • 2
  1. 1.Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
  2. 2.Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations