Baugh AT, Ryan MJ (2010) The development of sexual behavior in túngara frogs (Physalaemus pustulosus). J Comp Psychol 124(1):66–80. doi:10.1037/a0017227
PubMed
Article
Google Scholar
Baugh AT, Hoke KL, Ryan MJ (2012) Development of communication behaviour: receiver ontogeny in Túngara frogs and a prospectus for a behavioural evolutionary development. Sci World J 2012:680632. doi:10.1100/2012/680632
Article
Google Scholar
Bernal XE, Rand AS, Ryan MJ (2009) Task differences confound sex differences in receiver permissiveness in túngara frogs. Proc R Soc B 276(1660):1323–1329. doi:10.1098/rspb.2008.0935
PubMed
Article
Google Scholar
Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58(1):1–17. doi:10.1016/j.brainresrev.2007.10.013
PubMed
Article
CAS
Google Scholar
Bharati IS, Goodson JL (2006) Fos responses of dopamine neurons to sociosexual stimuli in male zebra finches. Neuroscience 143:661–670
PubMed
Article
CAS
Google Scholar
Boatright-Horowitz SS, Simmons AM (1995) Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain. J Comp Physiol A 177(5):577–590
PubMed
Article
CAS
Google Scholar
Boatright-Horowitz SS, Simmons AM (1997) Transient “deafness” accompanies auditory development during metamorphosis from tadpole to frog. Proc Nat Acad Sci USA 94(26):14877–14882
PubMed
Article
CAS
Google Scholar
Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11(2, Part 2):490–493
PubMed
CAS
Google Scholar
Chakraborty M, Burmeister SS (2009) Estradiol induces sexual behavior in female túngara frogs. Horm Behav 55(1):106–112. doi:10.1016/j.yhbeh.2008.09.001
PubMed
Article
CAS
Google Scholar
Chakraborty M, Mangiamele LA, Burmeister SS (2010) Neural activity patterns in response to interspecific and intraspecific variation in mating calls in the túngara frog. PLoS One 5(9):e12898. doi:10.1371/journal.pone.0012898
PubMed
Article
Google Scholar
Cooney MM, Conaway CH, Mefford IN (1985) Epinephrine, norepinephrine and dopamine concentrations in amphibian brain. Comp Biochem Physiol C 82(2):395–397
PubMed
Article
CAS
Google Scholar
Cransac H, Cottet-Emard JM, Hellström S, Peyrin L (1998) Specific sound-induced noradrenergic and serotonergic activation in central auditory structures. Hear Res 118:151–156
PubMed
Article
CAS
Google Scholar
Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33(2–3):179–198
PubMed
Article
CAS
Google Scholar
Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behav Brain Res 145(1–2):63–77
PubMed
Article
Google Scholar
Endepols H, Roden K, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: II. Efferent connections. J Comp Neurol 483(4):437–457
PubMed
Article
Google Scholar
Endepols H, Muhlenbrock-Lenter S, Roth G, Walkowiak W (2006) The septal complex of the fire-bellied toad Bombina orientalis: chemoarchitecture. J Chem Neuroanat 31(1):59–76. doi:10.1016/j.jchemneu.2005.09.001
PubMed
Article
CAS
Google Scholar
Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicircularis). J Comp Neurol 306(4):613–630
PubMed
Article
CAS
Google Scholar
Forester DC (1975) Laboratory evidence for potential gene flow between two species of spadefoot toads, Scaphiopus bombifrons and Scaphiopus hammondii. Herpetologica 31(1975):282–286
Google Scholar
Fuller RW, Hemrick-Luecke SK (1983) Species differences in epinephrine concentration and norepinephrine N-methyltransferase activity in hypothalamus and brain stem. Comp Biochem Physiol C 74(1):47–49
PubMed
Article
CAS
Google Scholar
Gonzalez A, Smeets WJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303(3):457–477. doi:10.1002/cne.903030311
PubMed
Article
CAS
Google Scholar
Gonzalez A, Smeets WJ (1993) Noradrenaline in the brain of the South African clawed frog Xenopus laevis: a study with antibodies against noradrenaline and dopamine-β-hydroxylase. J Comp Neurol 331:363–374
PubMed
Article
CAS
Google Scholar
Gonzalez A, Smeets WJ (1995) Noradrenergic and adrenergic systems in the brain of the urodele amphibian, Pleurodeles waltlii, as revealed by immunohistochemical methods. Cell Tissue Res 279(3):619–627
PubMed
Article
CAS
Google Scholar
Gunne LM (1962) Relative adrenaline content in brain tissue. Acta Physiol Scand 56:324–333
PubMed
Article
CAS
Google Scholar
Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258(3):407–419. doi:10.1002/cne.902580309
PubMed
Article
CAS
Google Scholar
Hall IC, Rebec GV, Hurley LM (2010) Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. J Exp Biol 213(Pt 7):1009–1017. doi:10.1242/jeb.035956
PubMed
Article
CAS
Google Scholar
Horowitz SS, Simmons AM (2010) Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana). Brain Behav Evol 76(3–4):226–247
PubMed
Article
Google Scholar
Horowitz SS, Chapman JA, Simmons AM (2007) Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, Rana catesbeiana. Brain Behav Evol 69(1):1–19. doi:10.1159/000095027
PubMed
Article
Google Scholar
Hurley LM, Hall IC (2011) Context-dependent modulation of auditory processing by serotonin. Hear Res 279(1–2):74–84. doi:10.1016/j.heares.2010.12.015
PubMed
Article
CAS
Google Scholar
Juorio AV (1973) The distribution of catecholamines in the hypothalamus and other brain areas of some lower vertebrates. J Neurochem 20(2):641–645
PubMed
Article
CAS
Google Scholar
Kumaresan V, Kang C, Simmons AM (1998) Development and differentiation of the anuran auditory brainstem during metamorphosis: an acetylcholinesterase histochemical study. Brain Behav Evol 52(3):111–125
PubMed
Article
CAS
Google Scholar
Lazar G, Kozicz T (1990) Morphology of neurons and axon terminals associated with descending and ascending pathways of the lateral forebrain bundle in Rana esculenta. Cell Tissue Res 260(3):535–548
PubMed
Article
CAS
Google Scholar
Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162(2):243–259
PubMed
Article
CAS
Google Scholar
Lopez JM, Morona R, Gonzalez A (2010) Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. J Chem Neuroanat 40(4):325–338. doi:10.1016/j.jchemneu.2010.09.004
PubMed
Article
CAS
Google Scholar
Lowry CA, Renner KJ, Moore FL (1996) Catecholamines and indoleamines in the central nervous system of a urodele amphibian: a microdissection study with emphasis on the distribution of epinephrine. Brain Behav Evol 48(2):70–93
PubMed
Article
CAS
Google Scholar
Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122(1–2):1–17
PubMed
Article
CAS
Google Scholar
Maier S, Walkowiak W, Luksch H, Endepols H (2010) An indirect basal ganglia pathway in anuran amphibians? J Chem Neuroanat 40(1):21–35. doi:10.1016/j.jchemneu.2010.02.004
PubMed
Article
CAS
Google Scholar
Marin O, Gonzalez A, Smeets WJ (1997a) Anatomical substrate of amphibian basal ganglia involvement in visuomotor behaviour. Eur J Neurosci 9(10):2100–2109
PubMed
Article
CAS
Google Scholar
Marin O, Gonzalez A, Smeets WJ (1997b) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380(1):23–50
PubMed
Article
CAS
Google Scholar
Marin O, Smeets WJ, Munoz M, Sanchez-Camacho C, Pena JJ, Lopez JM, Gonzalez A (1999) Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians. Eur J Morphol 37(2–3):155–159
PubMed
CAS
Google Scholar
Mefford IN, Foutz A, Noyce N, Jurik SM, Handen C, Dement WC, Barchas JD (1982) Distribution of norepinephrine, epinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in dog brain. Brain Res 236(2):339–349
PubMed
Article
CAS
Google Scholar
Muhlenbrock-Lenter S, Endepols H, Roth G, Walkowiak W (2005) Immunohistological characterization of striatal and amygdalar structures in the telencephalon of the fire-bellied toad Bombina orientalis. Neuroscience 134(2):705–719. doi:10.1016/j.neuroscience.2005.04.017
PubMed
Article
CAS
Google Scholar
Neary TJ (1990) The pallium of anuran amphibians. In: Jones EG, Peters A (eds) Cerebral cortex: comparative structure and evolution of cerebral cortex, Part 1, vol 8A. Plenum Press, New York, pp 107–138
Chapter
Google Scholar
Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213(3):262–278
PubMed
Article
CAS
Google Scholar
Niu X, Canlon B (2002) Activation of tyrosine hydroxylase in the lateral efferent terminals by sound conditioning. Hear Res 174:124–132
PubMed
Article
CAS
Google Scholar
O’Connell LA, Hofmann HA (2011a) Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol 32(3):320–335. doi:10.1016/j.yfrne.2010.12.004
PubMed
Article
Google Scholar
O’Connell LA, Hofmann HA (2011b) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519(18):3599–3639. doi:10.1002/cne.22735
PubMed
Article
Google Scholar
O’Connell LA, Matthews BJ, Ryan MJ, Hofmann HA (2010) Characterization of the dopamine system in the brain of the túngara frog, Physalaemus pustulosus. Brain Behav Evol 76(3–4):211–225. doi:10.1159/000321715
PubMed
Article
Google Scholar
Pfennig KS (2000) Female spadefoot toads compromise on mate quality to ensure conspecific matings. Behav Ecol 11:220–227
Article
Google Scholar
Pfennig KS (2007) Facultative mate choice drives adaptive hybridization. Science 318(5852):965–967. doi:10.1126/science.1146035
PubMed
Article
CAS
Google Scholar
Pfennig KS, Stewart AB (2011) Asymmetric reproductive character displacement in male aggregation behaviour. Proc R Soc B 278(1716):2348–2354. doi:10.1098/rspb.2010.2196
PubMed
Article
Google Scholar
Pfennig KS, Rapa K, McNatt R (2000) Evolution of male mating behaviour: male spadefoot toads preferentially associate with conspecific males. Behav Ecol Sociobiol 48:69–74
Article
Google Scholar
Potter HD (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28(6):1132–1154
PubMed
CAS
Google Scholar
Salvante KG, Racke DM, Campbell CR, Sockman KW (2010) Plasticity in singing effort and its relationship with monoamine metabolism in the songbird telencephalon. Dev Neurobiol 70(1):41–57. doi:10.1002/dneu.20752
PubMed
CAS
Google Scholar
Sanchez-Camacho C, Marin O, Smeets WJ, Ten Donkelaar HJ, Gonzalez A (2001) Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. J Comp Neurol 434(2):209–232
PubMed
Article
CAS
Google Scholar
Sanchez-Camacho C, Pena JJ, Gonzalez A (2003) Catecholaminergic innervation of the septum in the frog: a combined immunohistochemical and tract-tracing study. J Comp Neurol 455(3):310–323. doi:10.1002/cne.10500
PubMed
Article
CAS
Google Scholar
Schmidt RS (1990) Releasing (unclasping) in male American toads: a neural substrate in the lateral subtoral tegmentum. Brain Behav Evol 36(5):307–314
PubMed
Article
CAS
Google Scholar
Segura ET, Biscardi AM (1967) Changes in brain epinephrine and norepinephrine induced by afferent electrical stimulation in the isolated toad head. Life Sci 6(15):1599–1603
PubMed
Article
CAS
Google Scholar
Smeets WJ, Gonzalez A (2000) Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Rev 33(2–3):308–379
PubMed
Article
CAS
Google Scholar
Sockman KW, Salvante KG (2008) The integration of song environment by catecholaminergic systems innervating the auditory telencephalon of adult female European starlings. Dev Neurobiol 68:656–668
PubMed
Article
Google Scholar
Takeda N (1997) The metabolism of biogenic monoamines during embryogenesis and metamorphosis in two anuran species. Gen Comp Endocrinol 106(3):361–373. doi:10.1006/gcen.1997.6885
PubMed
Article
CAS
Google Scholar
Ueda S, Nojyo Y, Sano Y (1984) Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog, Rana catesbeiana. Anat Embryol 169:219–229
PubMed
Article
CAS
Google Scholar
Vesselkin NP, Ermakova TV, Kenigfest NB, Goikovic M (1980) The striatal connections in frog Rana temporaria: an HRP study. J Hirnforsch 21(4):381–392
PubMed
CAS
Google Scholar
Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol 123(3):451–481
PubMed
CAS
Google Scholar
Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behavior of anurans. Am Zool 34:685–695
Google Scholar
Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morphol 37(2–3):177–181
PubMed
CAS
Google Scholar
Wilczynski W, Endepols H (2007) Central auditory pathways in anuran amphibians: the anatomical basis of hearing and sound communication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 221–249
Google Scholar
Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214(3):333–343. doi:10.1002/cne.902140310
PubMed
Article
CAS
Google Scholar
Wu GY, Wang SR (2007) Postsynaptic potentials and axonal projections of tegmental neurons responding to electrical stimulation of the toad striatum. Neurosci Let 429(2–3):111–114. doi:10.1016/j.neulet.2007.09.071
Article
CAS
Google Scholar
Yoshida M, Nagatsu I, Kondo Y, Karasawa N, Ohno T, Spatz M, Nagatsu T (1983) Immunohistochemical localization of the neurons containing catecholamine-synthesizing enzymes and serotonin in the brain of the bullfrog (Rana catesbeiana). Acta Histochem Cytochem 16:245–258
Article
CAS
Google Scholar