Skip to main content

Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata)

An Erratum to this article was published on 19 June 2013

Abstract

Monoamines are important neuromodulators that respond to social cues and that can, in turn, modify social responses. Yet we know very little about the ontogeny of monoaminergic systems and whether they contribute to the development of social behavior. Anurans are an excellent model for studying the development of social behavior because one of its primary components, phonotaxis, is expressed early in life. To examine the effect of social signals on monoamines early in ontogeny, we presented juvenile Mexican spadefoot toads (Spea multiplicata) with a male mating call or no sound and measured norepinephrine, epinephrine, dopamine, serotonin, and a serotonin metabolite, across the brain using high-pressure liquid chromatography. Our results demonstrate that adult-like monoaminergic systems are in place shortly after metamorphosis. Perhaps more interestingly, we found that mating calls increased the level of monoamines in the juvenile tegmentum, a midbrain region involved in sensory-motor integration and that contributes to brain arousal and attention. We saw no such increase in the auditory midbrain or in forebrain regions. We suggest that changes in monoamine levels in the juvenile tegmentum may reflect the effects of social signals on arousal state and could contribute to context-dependent modulation of social behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

5-HIAA:

5-Hydroxyindoleacetic acid

5-HT:

5-Hydroxytryptamine (serotonin)

A-D di:

Anterior-dorsal diencephalon

DA:

Dopamine

DOPAC:

3,4-Dihydroxyphenylacetic acid

E:

Epinephrine

HVA:

Homovanillic acid

ISO:

Isoproterenol

MHPG:

3-Methoxy-4-hydroxyphenylglycol

NE:

Norepinephrine

P:

Pallium

P-D di:

Posterior-dorsal diencephalon

PoA:

Preoptic area

P-V di:

Posterior-ventral diencephalon

SC:

Suprachiasmatic nucleus

SubP:

Subpallium

Teg:

Tegmentum

TS:

Torus semicircularis

References

  • Baugh AT, Ryan MJ (2010) The development of sexual behavior in túngara frogs (Physalaemus pustulosus). J Comp Psychol 124(1):66–80. doi:10.1037/a0017227

    PubMed  Article  Google Scholar 

  • Baugh AT, Hoke KL, Ryan MJ (2012) Development of communication behaviour: receiver ontogeny in Túngara frogs and a prospectus for a behavioural evolutionary development. Sci World J 2012:680632. doi:10.1100/2012/680632

    Article  Google Scholar 

  • Bernal XE, Rand AS, Ryan MJ (2009) Task differences confound sex differences in receiver permissiveness in túngara frogs. Proc R Soc B 276(1660):1323–1329. doi:10.1098/rspb.2008.0935

    PubMed  Article  Google Scholar 

  • Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58(1):1–17. doi:10.1016/j.brainresrev.2007.10.013

    PubMed  Article  CAS  Google Scholar 

  • Bharati IS, Goodson JL (2006) Fos responses of dopamine neurons to sociosexual stimuli in male zebra finches. Neuroscience 143:661–670

    PubMed  Article  CAS  Google Scholar 

  • Boatright-Horowitz SS, Simmons AM (1995) Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain. J Comp Physiol A 177(5):577–590

    PubMed  Article  CAS  Google Scholar 

  • Boatright-Horowitz SS, Simmons AM (1997) Transient “deafness” accompanies auditory development during metamorphosis from tadpole to frog. Proc Nat Acad Sci USA 94(26):14877–14882

    PubMed  Article  CAS  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11(2, Part 2):490–493

    PubMed  CAS  Google Scholar 

  • Chakraborty M, Burmeister SS (2009) Estradiol induces sexual behavior in female túngara frogs. Horm Behav 55(1):106–112. doi:10.1016/j.yhbeh.2008.09.001

    PubMed  Article  CAS  Google Scholar 

  • Chakraborty M, Mangiamele LA, Burmeister SS (2010) Neural activity patterns in response to interspecific and intraspecific variation in mating calls in the túngara frog. PLoS One 5(9):e12898. doi:10.1371/journal.pone.0012898

    PubMed  Article  Google Scholar 

  • Cooney MM, Conaway CH, Mefford IN (1985) Epinephrine, norepinephrine and dopamine concentrations in amphibian brain. Comp Biochem Physiol C 82(2):395–397

    PubMed  Article  CAS  Google Scholar 

  • Cransac H, Cottet-Emard JM, Hellström S, Peyrin L (1998) Specific sound-induced noradrenergic and serotonergic activation in central auditory structures. Hear Res 118:151–156

    PubMed  Article  CAS  Google Scholar 

  • Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33(2–3):179–198

    PubMed  Article  CAS  Google Scholar 

  • Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behav Brain Res 145(1–2):63–77

    PubMed  Article  Google Scholar 

  • Endepols H, Roden K, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: II. Efferent connections. J Comp Neurol 483(4):437–457

    PubMed  Article  Google Scholar 

  • Endepols H, Muhlenbrock-Lenter S, Roth G, Walkowiak W (2006) The septal complex of the fire-bellied toad Bombina orientalis: chemoarchitecture. J Chem Neuroanat 31(1):59–76. doi:10.1016/j.jchemneu.2005.09.001

    PubMed  Article  CAS  Google Scholar 

  • Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicircularis). J Comp Neurol 306(4):613–630

    PubMed  Article  CAS  Google Scholar 

  • Forester DC (1975) Laboratory evidence for potential gene flow between two species of spadefoot toads, Scaphiopus bombifrons and Scaphiopus hammondii. Herpetologica 31(1975):282–286

    Google Scholar 

  • Fuller RW, Hemrick-Luecke SK (1983) Species differences in epinephrine concentration and norepinephrine N-methyltransferase activity in hypothalamus and brain stem. Comp Biochem Physiol C 74(1):47–49

    PubMed  Article  CAS  Google Scholar 

  • Gonzalez A, Smeets WJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303(3):457–477. doi:10.1002/cne.903030311

    PubMed  Article  CAS  Google Scholar 

  • Gonzalez A, Smeets WJ (1993) Noradrenaline in the brain of the South African clawed frog Xenopus laevis: a study with antibodies against noradrenaline and dopamine-β-hydroxylase. J Comp Neurol 331:363–374

    PubMed  Article  CAS  Google Scholar 

  • Gonzalez A, Smeets WJ (1995) Noradrenergic and adrenergic systems in the brain of the urodele amphibian, Pleurodeles waltlii, as revealed by immunohistochemical methods. Cell Tissue Res 279(3):619–627

    PubMed  Article  CAS  Google Scholar 

  • Gunne LM (1962) Relative adrenaline content in brain tissue. Acta Physiol Scand 56:324–333

    PubMed  Article  CAS  Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258(3):407–419. doi:10.1002/cne.902580309

    PubMed  Article  CAS  Google Scholar 

  • Hall IC, Rebec GV, Hurley LM (2010) Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. J Exp Biol 213(Pt 7):1009–1017. doi:10.1242/jeb.035956

    PubMed  Article  CAS  Google Scholar 

  • Horowitz SS, Simmons AM (2010) Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana). Brain Behav Evol 76(3–4):226–247

    PubMed  Article  Google Scholar 

  • Horowitz SS, Chapman JA, Simmons AM (2007) Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, Rana catesbeiana. Brain Behav Evol 69(1):1–19. doi:10.1159/000095027

    PubMed  Article  Google Scholar 

  • Hurley LM, Hall IC (2011) Context-dependent modulation of auditory processing by serotonin. Hear Res 279(1–2):74–84. doi:10.1016/j.heares.2010.12.015

    PubMed  Article  CAS  Google Scholar 

  • Juorio AV (1973) The distribution of catecholamines in the hypothalamus and other brain areas of some lower vertebrates. J Neurochem 20(2):641–645

    PubMed  Article  CAS  Google Scholar 

  • Kumaresan V, Kang C, Simmons AM (1998) Development and differentiation of the anuran auditory brainstem during metamorphosis: an acetylcholinesterase histochemical study. Brain Behav Evol 52(3):111–125

    PubMed  Article  CAS  Google Scholar 

  • Lazar G, Kozicz T (1990) Morphology of neurons and axon terminals associated with descending and ascending pathways of the lateral forebrain bundle in Rana esculenta. Cell Tissue Res 260(3):535–548

    PubMed  Article  CAS  Google Scholar 

  • Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162(2):243–259

    PubMed  Article  CAS  Google Scholar 

  • Lopez JM, Morona R, Gonzalez A (2010) Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. J Chem Neuroanat 40(4):325–338. doi:10.1016/j.jchemneu.2010.09.004

    PubMed  Article  CAS  Google Scholar 

  • Lowry CA, Renner KJ, Moore FL (1996) Catecholamines and indoleamines in the central nervous system of a urodele amphibian: a microdissection study with emphasis on the distribution of epinephrine. Brain Behav Evol 48(2):70–93

    PubMed  Article  CAS  Google Scholar 

  • Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122(1–2):1–17

    PubMed  Article  CAS  Google Scholar 

  • Maier S, Walkowiak W, Luksch H, Endepols H (2010) An indirect basal ganglia pathway in anuran amphibians? J Chem Neuroanat 40(1):21–35. doi:10.1016/j.jchemneu.2010.02.004

    PubMed  Article  CAS  Google Scholar 

  • Marin O, Gonzalez A, Smeets WJ (1997a) Anatomical substrate of amphibian basal ganglia involvement in visuomotor behaviour. Eur J Neurosci 9(10):2100–2109

    PubMed  Article  CAS  Google Scholar 

  • Marin O, Gonzalez A, Smeets WJ (1997b) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380(1):23–50

    PubMed  Article  CAS  Google Scholar 

  • Marin O, Smeets WJ, Munoz M, Sanchez-Camacho C, Pena JJ, Lopez JM, Gonzalez A (1999) Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians. Eur J Morphol 37(2–3):155–159

    PubMed  CAS  Google Scholar 

  • Mefford IN, Foutz A, Noyce N, Jurik SM, Handen C, Dement WC, Barchas JD (1982) Distribution of norepinephrine, epinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in dog brain. Brain Res 236(2):339–349

    PubMed  Article  CAS  Google Scholar 

  • Muhlenbrock-Lenter S, Endepols H, Roth G, Walkowiak W (2005) Immunohistological characterization of striatal and amygdalar structures in the telencephalon of the fire-bellied toad Bombina orientalis. Neuroscience 134(2):705–719. doi:10.1016/j.neuroscience.2005.04.017

    PubMed  Article  CAS  Google Scholar 

  • Neary TJ (1990) The pallium of anuran amphibians. In: Jones EG, Peters A (eds) Cerebral cortex: comparative structure and evolution of cerebral cortex, Part 1, vol 8A. Plenum Press, New York, pp 107–138

    Chapter  Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213(3):262–278

    PubMed  Article  CAS  Google Scholar 

  • Niu X, Canlon B (2002) Activation of tyrosine hydroxylase in the lateral efferent terminals by sound conditioning. Hear Res 174:124–132

    PubMed  Article  CAS  Google Scholar 

  • O’Connell LA, Hofmann HA (2011a) Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol 32(3):320–335. doi:10.1016/j.yfrne.2010.12.004

    PubMed  Article  Google Scholar 

  • O’Connell LA, Hofmann HA (2011b) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519(18):3599–3639. doi:10.1002/cne.22735

    PubMed  Article  Google Scholar 

  • O’Connell LA, Matthews BJ, Ryan MJ, Hofmann HA (2010) Characterization of the dopamine system in the brain of the túngara frog, Physalaemus pustulosus. Brain Behav Evol 76(3–4):211–225. doi:10.1159/000321715

    PubMed  Article  Google Scholar 

  • Pfennig KS (2000) Female spadefoot toads compromise on mate quality to ensure conspecific matings. Behav Ecol 11:220–227

    Article  Google Scholar 

  • Pfennig KS (2007) Facultative mate choice drives adaptive hybridization. Science 318(5852):965–967. doi:10.1126/science.1146035

    PubMed  Article  CAS  Google Scholar 

  • Pfennig KS, Stewart AB (2011) Asymmetric reproductive character displacement in male aggregation behaviour. Proc R Soc B 278(1716):2348–2354. doi:10.1098/rspb.2010.2196

    PubMed  Article  Google Scholar 

  • Pfennig KS, Rapa K, McNatt R (2000) Evolution of male mating behaviour: male spadefoot toads preferentially associate with conspecific males. Behav Ecol Sociobiol 48:69–74

    Article  Google Scholar 

  • Potter HD (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28(6):1132–1154

    PubMed  CAS  Google Scholar 

  • Salvante KG, Racke DM, Campbell CR, Sockman KW (2010) Plasticity in singing effort and its relationship with monoamine metabolism in the songbird telencephalon. Dev Neurobiol 70(1):41–57. doi:10.1002/dneu.20752

    PubMed  CAS  Google Scholar 

  • Sanchez-Camacho C, Marin O, Smeets WJ, Ten Donkelaar HJ, Gonzalez A (2001) Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. J Comp Neurol 434(2):209–232

    PubMed  Article  CAS  Google Scholar 

  • Sanchez-Camacho C, Pena JJ, Gonzalez A (2003) Catecholaminergic innervation of the septum in the frog: a combined immunohistochemical and tract-tracing study. J Comp Neurol 455(3):310–323. doi:10.1002/cne.10500

    PubMed  Article  CAS  Google Scholar 

  • Schmidt RS (1990) Releasing (unclasping) in male American toads: a neural substrate in the lateral subtoral tegmentum. Brain Behav Evol 36(5):307–314

    PubMed  Article  CAS  Google Scholar 

  • Segura ET, Biscardi AM (1967) Changes in brain epinephrine and norepinephrine induced by afferent electrical stimulation in the isolated toad head. Life Sci 6(15):1599–1603

    PubMed  Article  CAS  Google Scholar 

  • Smeets WJ, Gonzalez A (2000) Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Rev 33(2–3):308–379

    PubMed  Article  CAS  Google Scholar 

  • Sockman KW, Salvante KG (2008) The integration of song environment by catecholaminergic systems innervating the auditory telencephalon of adult female European starlings. Dev Neurobiol 68:656–668

    PubMed  Article  Google Scholar 

  • Takeda N (1997) The metabolism of biogenic monoamines during embryogenesis and metamorphosis in two anuran species. Gen Comp Endocrinol 106(3):361–373. doi:10.1006/gcen.1997.6885

    PubMed  Article  CAS  Google Scholar 

  • Ueda S, Nojyo Y, Sano Y (1984) Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog, Rana catesbeiana. Anat Embryol 169:219–229

    PubMed  Article  CAS  Google Scholar 

  • Vesselkin NP, Ermakova TV, Kenigfest NB, Goikovic M (1980) The striatal connections in frog Rana temporaria: an HRP study. J Hirnforsch 21(4):381–392

    PubMed  CAS  Google Scholar 

  • Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol 123(3):451–481

    PubMed  CAS  Google Scholar 

  • Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behavior of anurans. Am Zool 34:685–695

    Google Scholar 

  • Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morphol 37(2–3):177–181

    PubMed  CAS  Google Scholar 

  • Wilczynski W, Endepols H (2007) Central auditory pathways in anuran amphibians: the anatomical basis of hearing and sound communication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 221–249

    Google Scholar 

  • Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214(3):333–343. doi:10.1002/cne.902140310

    PubMed  Article  CAS  Google Scholar 

  • Wu GY, Wang SR (2007) Postsynaptic potentials and axonal projections of tegmental neurons responding to electrical stimulation of the toad striatum. Neurosci Let 429(2–3):111–114. doi:10.1016/j.neulet.2007.09.071

    Article  CAS  Google Scholar 

  • Yoshida M, Nagatsu I, Kondo Y, Karasawa N, Ohno T, Spatz M, Nagatsu T (1983) Immunohistochemical localization of the neurons containing catecholamine-synthesizing enzymes and serotonin in the brain of the bullfrog (Rana catesbeiana). Acta Histochem Cytochem 16:245–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Keith W. Sockman for use of his HPLC system and S. B. Southerland for his expertise in measuring monoamines. This work was supported by a New Innovator Award from the Office of the Director, National Institutes of Health (1 DP2 OD004436-01) to K. S. Pfennig. The University of North Carolina Institutional Animal Care and Use Committee approved all animal procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina S. Burmeister.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moncalvo, V.G.R., Burmeister, S.S. & Pfennig, K.S. Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata). J Comp Physiol A 199, 681–691 (2013). https://doi.org/10.1007/s00359-013-0826-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0826-6

Keywords

  • Monoamines
  • Neuromodulator
  • Anuran
  • Acoustic communication
  • HPLC