Journal of Comparative Physiology A

, Volume 199, Issue 8, pp 669–680 | Cite as

Polarotaxis and scototaxis in the supratidal amphipod Platorchestia platensis

Original Paper


Talitrid amphipods use many cues for orientation during forays between temporary burrows and feeding areas, and for locating beaches when submerged, with visual cues being particularly important. Little evidence exists for polarized light among these visual cues despite extensive orientation by celestial and underwater polarized light in other crustaceans and in insects. We used electroretinography to assess spectral sensitivity in the eye of the beach flea Platorchestia platensis, and behavioral studies to test whether linearly polarized light serves as an orientation cue. Two spectral classes were present in the P. platensis eye with maxima at 431 and 520 nm. Non-uniform orientation of amphipods in the laboratory arena required either light/dark or polarized cues. Scototactic movements depended on arena conditions (day/night, wet/dry), while orientation under linearly polarized light was wavelength-dependent and parallel to the e-vector. Subsequent tests presented conflicting and additive scototactic and polarotactic cues to differentiate among these responses. In dry conditions, orientation parallel to the polarization e-vector overcame a dominant negative scototaxis, confirming that polarotaxis and scototaxis are separate orientation responses in this species. These behavioral results demonstrate talitrid amphipods can perceive and orient to linearly polarized light, and may use it to orient toward preferred zones on beaches.


Polarized light Orientation Spectral sensitivity Behavior Talitridae 


  1. Behbehani MI, Croker RA (1982) Ecology of beach wrack in northern New England with special reference to Orchestia platensis. Est Coast Shelf Sci 15:611–620CrossRefGoogle Scholar
  2. Bousefield EL (1973) Shallow-water Gammaridean Amphipoda of New England. Cornell University Press, IthacaGoogle Scholar
  3. Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10CrossRefGoogle Scholar
  4. Cohen JH, Frank TM (2007) Vision in the hyperiid amphipod Scina crassicornis. J Mar Biol Assoc UK 87:1201–1206CrossRefGoogle Scholar
  5. Cohen JH, Cronin TW, Lessios NN, Forward RB Jr (2010) Visual physiology underlying orientation and diel behavior in the sand beach amphipod Talorchestia longicornis. J Exp Biol 213:3843–3851PubMedCrossRefGoogle Scholar
  6. Conceição MB, Bishop JDD, Thorpe JP (1998) Genetic relationships between ecologically divergent species of talitrid amphipod (Crustacea). Mar Ecol Prog Ser 165:225–233CrossRefGoogle Scholar
  7. Cronin TW, Forward RB Jr (1988) The visual pigments of crabs I. Spectral characteristics. J Comp Physiol A 162:463–478CrossRefGoogle Scholar
  8. Cronin TW, Marshall J (2011) Patterns and properties of polarized light in air and water. Phil Trans Roy Soc B 366:619–626CrossRefGoogle Scholar
  9. Cronin TW, Shashar N (2001) The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J Exp Biol 204:2461–2467PubMedGoogle Scholar
  10. Cronin TW, Warrant EJ, Greiner B (2006) Celestial polarization patterns during twilight. Appl Optics 45:5582–5589CrossRefGoogle Scholar
  11. Díaz H, Orihuela B, Forward RB Jr (1995) Visual orientation of post larval and juvenile mangrove crabs. J Crust Biol 15:671–678CrossRefGoogle Scholar
  12. Edwards JM, Naylor E (1987) Endogenous circadian changes in orientation behaviour of Talitrus saltator. J Mar Biol Assoc UK 67:17–26CrossRefGoogle Scholar
  13. Fanini L, Defeo O, Do Santos C, Scapini F (2009) Testing the habitat safety hypothesis with behavioural field experiments: amphipod orientation on sandy beaches with contrasting morphodynamics. Mar Ecol Prog Ser 392:133–141CrossRefGoogle Scholar
  14. Forward RB Jr, Bourla MH, Lessios NN, Cohen JH (2009a) Orientation to shorelines by the supratidal amphipod Talorchestia longicornis: wavelength specific behavior during sun compass orientation. J Exp Mar Biol Ecol 376:102–109CrossRefGoogle Scholar
  15. Forward RB Jr, Bourla MH, Darnell MZ, Cohen JH (2009b) Entrainment of the circadian rhythm of the supratidal amphipod Talorchestia longicornis by light and temperature: mechanisms of detection and hierarchical organization. Mar Fresh Behav Physiol 42:233–247CrossRefGoogle Scholar
  16. Freake MJ (1999) Evidence for orientation using the e-vector direction of polarised light by the sleepy lizard Tiliqua rugosa. J Exp Biol 202:1159–1166PubMedGoogle Scholar
  17. Frelon-Raimond M, Meyer-Rochow VB, Ugolini A, Gilbert M (2002) Intracerebral ocelli in an amphipod: extraretinal photoreceptors of the sand hopper Talitrus saltator (Crustacea: Amphipoda). Invert Biol 121:73–78CrossRefGoogle Scholar
  18. Galanti G, Mercatelli L, Ugolini A (2007) Spectral sensitivity in Talitrus saltator: behavioural test. Biol Mar Med 14:392–393Google Scholar
  19. Goddard SM, Forward RB Jr (1991) The role of the underwater polarized light pattern, in sun compass navigation of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491CrossRefGoogle Scholar
  20. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528PubMedCrossRefGoogle Scholar
  21. Hallberg E, Nilsson HL, Elofsson R (1980) Classification of amphipod compound eyes: the fine structure of the ommatidial units (Crustacea: Amphipoda). Zoomorphologie 103:59–66Google Scholar
  22. Horváth G, Varjú D (1995) Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water surface. Vis Res 35:1651–1666PubMedCrossRefGoogle Scholar
  23. Jander R, Waterman TH (1960) Sensory discrimination between polarized light and light intensity patterns in arthropods. J Cell Comp Physiol 56:137–159PubMedCrossRefGoogle Scholar
  24. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7CrossRefGoogle Scholar
  25. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379PubMedCrossRefGoogle Scholar
  26. Langdon JW, Herrnkind WF (1985) Visual shape discrimination in the fiddler crab, Uca pugilator. Mar Behav Physiol 11:315–325CrossRefGoogle Scholar
  27. LeCroy SE (2011) An illustrated identification guide to the nearshore marine and estuarine Gammaridean Amphipoda of Florida. Vol 5, Florida Department of Environmental Protection, TallahasseeGoogle Scholar
  28. Mezzetti MC, Scapini F (1995) Aspects of spectral sensitivity in Talitrus saltator (Montagu) (Crustacea: Amphipoda). Mar Fresh Behav Physiol 26:35–45CrossRefGoogle Scholar
  29. Mezzetti MC, Naylor E, Scapini F (1994) Rhythmic responsiveness to visual stimuli in different populations of talitrid amphipods from Atlantic and Mediterranean coasts: an ecological interpretation. J Exp Mar Biol Ecol 181:279–291CrossRefGoogle Scholar
  30. Mezzetti MC, Nardi M, Scapini F (1997) Variation and ontogeny of the response to visual stimuli in Mediterranean populations of Talitrus saltator (Montagu) (Crustacea: Amphipoda). J Exp Mar Biol Ecol 211:129–142CrossRefGoogle Scholar
  31. Nardi M, Persson L-E, Scapini F (2000) Diel variation of visual response in Talitrus saltator and Talorchestia deshayesii (Crustacea: Amphipoda) from high latitude beaches of low tidal amplitude. Est Coast Shelf Sci 50:333–340CrossRefGoogle Scholar
  32. Pardi L, Papi F (1953) Ricerche sull’orientamento di Talitrus saltator (Montagu) (Crustacea, Amphipoda). I. L’orientamento durante il giorno in una popolazione del litorale tirrenico. Z vergl Physiol 35:459–489Google Scholar
  33. Scapini F (1997) Variation in scototaxis and orientation adaptation of Talitrus saltator populations subjected to different ecological constraints. Est Coast Shelf Sci 44:139–146CrossRefGoogle Scholar
  34. Scapini F (2006) Keynote papers on sand hopper orientation and navigation. Mar Fresh Behav Physiol 39:73–85CrossRefGoogle Scholar
  35. Shashar N, Johnsen S, Lerner A, Sabbah S, Chiao C–C, Mathger LM, Hanlon RT (2011) Underwater linear polarization: physical limitations to biological functions. Phil Trans R Soc B 366:649–654PubMedCrossRefGoogle Scholar
  36. Stowasser A, Buschbeck EK (2012) Electrophysiological evidence for polarization sensitivity in the camera-type eyes of the aquatic predacious insect larva Thermonectus marmoratus. J Exp Biol 215:3577–3586PubMedCrossRefGoogle Scholar
  37. terHorst CP (2012) Context-dependent orientation cues in a supratidal amphipod. Mar Fresh Behav Physiol 45:45–50CrossRefGoogle Scholar
  38. Ugolini A (2003) Activity rhythms and orientation in sand hoppers (Crustacea: Amphipoda). Front Biosci 8:722–732CrossRefGoogle Scholar
  39. Ugolini A, Scapini F, Pardi L (1986) Interaction between solar orientation and landscape visibility in Talitrus saltator (Crustacea: Amphipoda). Mar Biol 90:449–460CrossRefGoogle Scholar
  40. Ugolini A, Laffort B, Castellini C, Beugnon G (1993) Celestial orientation and ultraviolet perception in Talitrus saltator. Ethol Ecol Evol 5:489–499CrossRefGoogle Scholar
  41. Ugolini A, Vignali B, Castellini C, Lindström M (1996) Zonal orientation and spectral filtering in Talitrus saltator (Montagu) (Crustacea: Amphipoda). J Mar Biol Assoc UK 76:377–389CrossRefGoogle Scholar
  42. Ugolini A, Melis C, Tiribilli B, Castellini C (2002) The sun, the moon, and the sandhopper. In: Wiese K (ed) Crustacean experimental systems in neurobiology. Springer, Berlin, pp 247–260CrossRefGoogle Scholar
  43. Ugolini A, Somigli S, Mercatelli L (2006) Green land and blue sea: a coloured landscape in the orientation of the sand hopper Talitrus saltator (Montagu) (Amphipoda: Talitridae). J Exp Biol 209:2509–2514PubMedCrossRefGoogle Scholar
  44. Ugolini A, Galanti G, Mercatelli L (2009) Difference in skylight intensity is a new celestial cue for sand hopper orientation (Amphipoda: Talitridae). Anim Behav 77:171–175CrossRefGoogle Scholar
  45. Ugolini A, Borgioli G, Galanti G, Mercatelli L, Hariyama T (2010) Photoresponses of the compound eye of the sand hopper Talitrus saltator (Crustaceal: Amphipoda) in the ultraviolet-blue range. Biol Bull 219:72–79PubMedGoogle Scholar
  46. Ugolini A, Galanti G, Mercatelli L (2012) The skylight gradient of luminance helps sand hoppers in sun and moon identification. J Exp Biol 215:2814–2819PubMedCrossRefGoogle Scholar
  47. Walsh ME, Bourla MH, Sabella CM, Forward RB Jr (2010) Hierarchy of sun beach slope, and landmarks as cues for Y-axis orientation of the supratidal amphipod Talorchestia longicornis (Say). Mar Fresh Behav Physiol 43:203–220CrossRefGoogle Scholar
  48. Warrant E, Dacke M (2010) Visual orientation and navigation in nocturnal arthropods. Brain Behav Evol 75:156–173PubMedCrossRefGoogle Scholar
  49. Wehner R, Labhart T (2006) Polarization vision. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348Google Scholar
  50. Wildish DJ (2012) Long distance dispersal and evolution of talitrids (Crustacea: Amphipoda: talitridae) in the northeast Atlantic islands. J Nat Hist 46:2329–2348CrossRefGoogle Scholar
  51. Zar JH (1999) Biological statistics. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of Earth, Ocean and Environment, School of Marine Science and PolicyUniversity of DelawareLewesUSA
  2. 2.Department of Marine ScienceEckerd CollegeSt. PetersburgUSA

Personalised recommendations