Journal of Comparative Physiology A

, Volume 199, Issue 6, pp 441–450 | Cite as

Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris)

  • Joseph C. GaspardIII
  • Gordon B. Bauer
  • Roger L. Reep
  • Kimberly Dziuk
  • LaToshia Read
  • David A. Mann
Original Paper


Florida manatees inhabit the coastal and inland waters of the peninsular state. They have little difficulty navigating the turbid waterways, which often contain obstacles that they must circumnavigate. Anatomical and behavioral research suggests that the vibrissae and associated follicle–sinus complexes that manatees possess over their entire body form a sensory array system for detecting hydrodynamic stimuli analogous to the lateral line system of fish. This is consistent with data highlighting that manatees are tactile specialists, evidenced by their specialized facial morphology and use of their vibrissae during feeding and active investigation/manipulation of objects. Two Florida manatees were tested in a go/no-go procedure using a staircase method to assess their ability to detect low-frequency water movement. Hydrodynamic vibrations were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz, which are below the apparent functional hearing limit of the manatee. The manatees detected particle displacement of less than 1 μm for frequencies of 15–150 Hz and of less than a nanometer at 150 Hz. Restricting the facial vibrissae with various size mesh openings indicated that the specialized sensory hairs played an important role in the manatee’s exquisite tactile sensitivity.


Manatee Sirenian Tactile Hydrodynamic stimuli Vibrissae 



Bristle-like hair


Frequency (Hz)


False alarm


Follicle–sinus complex


Minimum angle of resolution


  1. Adibi M, Diamond ME, Arabzadeh E (2012) Behavioral study of whisker-mediated vibration sensation in rats. Proc Natl Acad Sci USA 109:971–976PubMedCrossRefGoogle Scholar
  2. Bachteler D, Dehnhardt G (1999) Active touch performance in the Antillean manatee: evidence for a functional differentiation of facial tactile hairs. Zoology 102:61–69Google Scholar
  3. Bauer GB, Colbert DE, Gaspard JC, Littlefield B, Fellner W (2003) Underwater visual acuity of Florida manatees (Trichechus manatus latirostris). Int J Comp Psych 16:130–142Google Scholar
  4. Bauer GB, Gaspard JC III, Colbert DE, Leach JB, Stamper SA, Mann D, Reep R (2012) Tactile discrimination of textures by Florida manatees (Trichechus manatus latirostris). Mar Mammal Sci doi: 10.1111/j.1748-7692.2012.00565.x
  5. Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47:1043–1056PubMedGoogle Scholar
  6. Catania KC, Kaas JH (1997) Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation. J Comp Neurol 387:215–233PubMedCrossRefGoogle Scholar
  7. Colbert D, Fellner W, Bauer GB, Manire CA, Rhinehart HL (2001) Husbandry and research training of two Florida manatees. (Trichechus manatus latirostris) Aquat Mamm 27:16–23Google Scholar
  8. Colbert DE, Gaspard JC, Reep R, Mann DA, Bauer GB (2009) Four-choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris. J Exp Biol 212(13):2105–2112PubMedCrossRefGoogle Scholar
  9. Coombs S, Janssen J (1989a) Peripheral processing by the lateral line system of the spotted sculpin (Cottus bairdi). In: Coombs S, Görner P, Munz H (eds) The mechanosensory lateral line system: neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 299–319CrossRefGoogle Scholar
  10. Coombs S, Janssen J (1989b) Waterflow detection by the mechanosensory lateral line. In: Stebbins WC, Berkley M (eds) Comparative perception. John Wiley, New York, pp 89–123Google Scholar
  11. Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567PubMedCrossRefGoogle Scholar
  12. Coombs S, New JG, Nelson M (2002) Information-processing demands in electrosensory and mechanosensory lateral line systems. J Physiol 96:341–354Google Scholar
  13. Cornsweet TN (1962) The staircase method in psychophysics. Am J Psychol 75:485–491PubMedCrossRefGoogle Scholar
  14. Crish S, Rice FL, Park T, Comer C (2003) Somatosensory organization and behavior in naked mole rats I: body vibrissae form a stereotyped sensory array that mediates orientation to tactile stimuli. Brain Behav Evol 62:141–152PubMedCrossRefGoogle Scholar
  15. Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol 175:791–800CrossRefGoogle Scholar
  16. Dehnhardt G, Dücker G (1996) Tactile discrimination of size and shape by a California sea lion (Zalophus californianus). Ani Learn Beh 24:366–374CrossRefGoogle Scholar
  17. Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbor seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323PubMedGoogle Scholar
  18. Dehnhardt G, Mauck B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkely, pp 295–314Google Scholar
  19. Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236CrossRefGoogle Scholar
  20. Dehnhardt G, Hyvarinen H, Palviainen A, Klauer G (1999) Structure and innervation of the vibrissal follicle-sinus complex in the Australian water rat, Hydromys chrysogaster. J Comp Neurol 411:550–562PubMedCrossRefGoogle Scholar
  21. Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104PubMedCrossRefGoogle Scholar
  22. Dykes RW (1975) Afferent fibers from mystacial vibrissae of cats and seals. J Neurophysiol 38:650–662PubMedGoogle Scholar
  23. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119PubMedCrossRefGoogle Scholar
  24. Fay FH (1982) Ecology and biology of the Pacific walrus Odobenus rosmarus divergens. USFWS North American Fauna 74, Washington, DCGoogle Scholar
  25. Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954PubMedCrossRefGoogle Scholar
  26. Fay RR, Olsho LW (1979) Discharge patterns oflagenar and saccular neurons of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol 62:377–386CrossRefGoogle Scholar
  27. Fay RR, Edds-Walton PL, Highstein SM (1994) Directional sensitivity of saccular afferents of the toadfish to linear acceleration at audio frequencies. Biol Bull 187:258–259PubMedGoogle Scholar
  28. Gaspard JC III, Bauer GB, Reep RL, Dziuk K, Cardwell A, Read L, Mann DA (2012) Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J Exp Biol 215:1442–1447PubMedCrossRefGoogle Scholar
  29. Gerstein ER, Gerstein L, Forsythe SE, Blue JE (1999) The underwater audiogram of the West Indian manatee (Trichechus manatus). J Acoust Soc Am 105:3575–3583PubMedCrossRefGoogle Scholar
  30. Gescheider GA (1997) Psychophysics: the fundamentals. Lawrence Ehrlbaum Associates, Mahwah, NJGoogle Scholar
  31. Gläser N, Wieskotten S, Otter C, Dehnhardt G, Hanke W (2011) Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A 197:141–151CrossRefGoogle Scholar
  32. Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Michael M, Hanke F, Leder A, Dehnhardt G (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672PubMedCrossRefGoogle Scholar
  33. Hartman DS (1979) Ecology and behavior of the manatee (Trichechus manatus) in Florida. Am Soc Mamm Special Pub 5:1–153Google Scholar
  34. Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin, pp 217–227CrossRefGoogle Scholar
  35. Hyvärinen H (1995) Structure and function of the vibrissae of the ringed seal (Phoca hispida L.). In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory systems of aquatic mammals. De Spil Publishers, The Netherlands, pp 429–445Google Scholar
  36. Kalmijn AJ (1988) Hydrodynamics and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130CrossRefGoogle Scholar
  37. Kastelein RA, Van Gaalen MA (1988) The tactile sensitivity of the mystacial vibrissae of a Pacific walrus (Odobenus rosmarus divergens) Part 1. Aquatic Mamm 14:123–133Google Scholar
  38. Lu Z, Popper AN, Fay RR (1996) Behavioral detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J Comp Physiol A 179:227–233PubMedCrossRefGoogle Scholar
  39. Mann DA, Colbert DE, Gaspard JC, Casper BM, Cook MLH, Reep RL, Bauer GB (2005) Auditory temporal resolution of the manatee (Trichechus manatus latirostris) auditory system. J Comp Physiol A 191:903–908CrossRefGoogle Scholar
  40. Marshall CD, Reep RL (1995) Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. Brain Behav Evol 45:1–18PubMedCrossRefGoogle Scholar
  41. Marshall CD, Huth GD, Edmonds VM, Halin DL, Reep RL (1998) Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Mar Mammal Sci 14:274–289CrossRefGoogle Scholar
  42. Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the mystacial vibrissal follicle-sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). Anat Rec A 288:13–25Google Scholar
  43. Mass AM, Odell DK, Ketten DR, Supin AY (1997) Ganglion layer topography and retinal resolution of the Caribbean manatee (Trichechus manatus latirostris). Dokl Biol Sci 355:392–394Google Scholar
  44. Mass AM, Ketten DR, Odell DK, Supin AY (2012) Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris. Anat Rec 295:177–186CrossRefGoogle Scholar
  45. Reep RL, Johnson JI, Switzer RC, Welker WI (1989) Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Brain Behav Evol 34:365–386PubMedCrossRefGoogle Scholar
  46. Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998) Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Mar Mammal Sci 14:257–273CrossRefGoogle Scholar
  47. Reep RL, Stoll ML, Marshall CD, Homer BL, Samuelson DA (2001) Microanatomy of facial vibrissae in the Florida manatee: the basis for specialized sensory function and oripulation. Brain Behav Evol 58:1–14PubMedCrossRefGoogle Scholar
  48. Reep RL, Marshall CD, Stoll ML (2002) Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 59:141–154PubMedCrossRefGoogle Scholar
  49. Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of the vibrissal follicle-sinus complexes. J Comp Neurol 252:154–174PubMedCrossRefGoogle Scholar
  50. Rice FL, Fundin BT, Arviddson J, Aldskogius H, Johansson O (1997) Comprehensive immunoflorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385:149–184PubMedCrossRefGoogle Scholar
  51. Sarko DK, Reep RL, Mazurkiewicz JE, Rice FL (2007) Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris). J Comp Neurol 504:217–237PubMedCrossRefGoogle Scholar
  52. Schulte-Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 210:781–787PubMedCrossRefGoogle Scholar
  53. Sokolov VE, Kulikov VF (1987) The structure and function of the vibrissal apparatus in some rodents. Mammalia 51:125–138CrossRefGoogle Scholar
  54. von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374CrossRefGoogle Scholar
  55. Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol A 143:375–382CrossRefGoogle Scholar
  56. Zelena J (1994) Nerves and mechanoreceptors. Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joseph C. GaspardIII
    • 1
    • 2
  • Gordon B. Bauer
    • 1
    • 3
  • Roger L. Reep
    • 2
  • Kimberly Dziuk
    • 1
  • LaToshia Read
    • 1
  • David A. Mann
    • 1
    • 4
  1. 1.Mote Marine Laboratory and AquariumSarasotaUSA
  2. 2.Aquatic Animal Health Program, Department of Physiological Sciences, College of Veterinary MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Division of Social SciencesNew College of FloridaSarasotaUSA
  4. 4.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations