Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation

Abstract

Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

BF:

Best frequency

CRW:

Change response window

ESA:

Ear specific adaptation

ERB:

Equivalent rectangular bandwidth

F1:

First frequency presented

F2:

Second frequency presented

FM:

Frequency modulation

FSA:

Frequency specific adaptation

MMN:

Mismatch negativity

ORW:

Onset response window

SSA:

Stimulus specific adaptation

References

  1. Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve-endings: part II. The response of a single end-organ. J Physiol 61:151–171

    PubMed  CAS  Google Scholar 

  2. Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5:e14071

    PubMed  Article  CAS  Google Scholar 

  3. Bass AH, Rose GJ, Pritz MB (2005) Auditory midbrain of fish, amphibians and reptiles: model systems for understanding auditory function. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 459–492

    Google Scholar 

  4. Bauerle P, von der BW, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31:9708–9722

    PubMed  Article  CAS  Google Scholar 

  5. Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    PubMed  Article  Google Scholar 

  6. Bee MA, Micheyl C, Oxenham AJ, Klump GM (2010) Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming. J Comp Physiol A 196:543–557

    Article  Google Scholar 

  7. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Assoc. Inc., Sunderland

    Google Scholar 

  8. Bregman AS (1990) Auditory scene analysis: The perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  9. Brimijoin WO, O’Neill WE (2005) On the prediction of sweep rate and directional selectivity for FM sounds from two-tone interactions in the inferior colliculus. Hear Res 210:63–79

    PubMed  Article  Google Scholar 

  10. Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol 197:705–722

    PubMed  CAS  Article  Google Scholar 

  11. Cai H, Carney LH, Colburn HS (1998a) A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. J Acoust Soc Am 103:475–493

    PubMed  CAS  Article  Google Scholar 

  12. Cai H, Carney LH, Colburn HS (1998b) A model for binaural response properties of inferior colliculus neurons. II. A model with interaural time difference-sensitive excitatory and inhibitory inputs and an adaptation mechanism. J Acoust Soc Am 103:494–506

    PubMed  CAS  Article  Google Scholar 

  13. Carlyon RP (2004) How the brain separates sounds. Trends Cogn Sci 8:465–471

    PubMed  Article  Google Scholar 

  14. Condon CD, Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav Neurosci 105:416–430

    PubMed  CAS  Article  Google Scholar 

  15. Demany L, Semal C (2008) The role of memory in auditory perception. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 77–113

    Google Scholar 

  16. Dong S, Clayton DF (2009) Habituation in songbirds. Neurobiol Learn Mem 92:183–188

    PubMed  Article  Google Scholar 

  17. Eggermont JJ (2000) Neural responses in primary auditory cortex mimic psychophysical, across-frequency-channel, gap-detection thresholds. J Neurophysiol 84:1453–1463

    PubMed  CAS  Google Scholar 

  18. Ehret G, Capranica RR (1980) Masking patterns and filter characteristics of auditory-nerve fibers in the green treefrog (Hyla-cinerea). J Comp Physiol 141:1–12

    Article  Google Scholar 

  19. Fay RR (2008) Sound source perception and stream segregation in nonhuman vertebrate animals. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 307–323

    Google Scholar 

  20. Feng AS (1982) Quantitative analysis of intensity—rate and intensity—latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana p. pipiens). Hear Res 6:241–246

    PubMed  CAS  Article  Google Scholar 

  21. Feng AS, Lin WY (1994) Phase-locked response characteristics of single neurons in the frog “cochlear nucleus” to steady-state and sinusoidal-amplitude-modulated tones. J Neurophysiol 72:2209–2221

    PubMed  CAS  Google Scholar 

  22. Feng AS, Ratnam R (2000) Neural basis of hearing in real-world situations. Annu Rev Psychol 51:699–725

    PubMed  CAS  Article  Google Scholar 

  23. Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216

    PubMed  CAS  Article  Google Scholar 

  24. Feng AS, Lin WY, Sun L (1994) Detection of gaps in sinusoids by frog auditory nerve fibers: importance in AM coding. J Comp Physiol A 175:531–546

    PubMed  CAS  Article  Google Scholar 

  25. Feng AS, Arch VS, Yu ZL, Yu XJ, Xu ZM, Shen JX (2009) Neighbor-stranger discrimination in concave-eared torrent frogs, Odorrana tormota. Ethology 115:851–856

    Article  Google Scholar 

  26. Formby C, Forrest TG (1991) Detection of silent temporal gaps in sinusoidal markers. J Acoust Soc Am 89:830–837

    PubMed  CAS  Article  Google Scholar 

  27. Fuzessery ZM (1988) Frequency tuning in the anuran central auditory system. In: Fritzch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 253–273

    Google Scholar 

  28. Fuzessery ZM, Feng AS (1982) Frequency-selectivity in the anuran auditory midbrain—single unit responses to single and multiple tone stimulation. J Comp Physiol 146:471–484

    Article  Google Scholar 

  29. Fuzessery ZM, Feng AS (1983) Frequency selectivity in the anuran medulla: Excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei. J Comp Physiol 150:107–119

    Article  Google Scholar 

  30. Glagow M, Ewert JP (1997) Dopaminergic modulation of visual responses in toads. II. Influences of apomorphine on retinal ganglion cells and tectal cells. J Comp Physiol A 180:11–18

    PubMed  CAS  Article  Google Scholar 

  31. Goense JB, Feng AS (2012) Effects of noise bandwidth and amplitude modulation on masking in frog auditory midbrain neurons. PLoS ONE 7:e31589

    PubMed  CAS  Article  Google Scholar 

  32. Gooler DM, Feng AS (1992) Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol 67:1–22

    PubMed  CAS  Google Scholar 

  33. Green DM (1988) Profile analysis: auditory intensity discrimination. Oxford University Press, Oxford

    Google Scholar 

  34. Green DM, Forrest TG (1989) Temporal gaps in noise and sinusoids. J Acoust Soc Am 86:961–970

    PubMed  CAS  Article  Google Scholar 

  35. Grose JH, Hall JW III, Buss E, Hatch D (2001) Gap detection for similar and dissimilar gap markers. J Acoust Soc Am 109:1587–1595

    PubMed  CAS  Article  Google Scholar 

  36. Hall JC, Feng AS (1991) Temporal processing in the dorsal medullary nucleus of the Northern leopard frog (Rana pipiens pipiens). J Neurophysiol 66:955–973

    PubMed  CAS  Google Scholar 

  37. Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. J Acoust Soc Am 76:50–56

    PubMed  CAS  Article  Google Scholar 

  38. Hartmann WH (1998) Signals, sound, and sensation. AIP Press, New York

    Google Scholar 

  39. Heinz MG, Goldstein MH, Formby C (1996) Temporal gap detection thresholds in sinusoidal markers simulated with a multi-channel, multi-resolution model of the auditory periphery. Aud Neurosci 3:35–56

    Google Scholar 

  40. Hemmi JM, Merkle T (2009) High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc R Soc B 276:4381–4388

    PubMed  Article  Google Scholar 

  41. Ingham NJ, McAlpine D (2004) Spike-frequency adaptation in the inferior colliculus. J Neurophysiol 91:632–645

    PubMed  Article  Google Scholar 

  42. Joermann G (1988) Masked thresholds of auditory midbrain neurons in the frog Rana ridibunda. Hear Res 35:191–199

    PubMed  CAS  Article  Google Scholar 

  43. Krebs JR (1976) Habituation and song repertoires in great tit. Behav Ecol Sociobiol 1:215–227

    Article  Google Scholar 

  44. Larson KA (2004) Advertisement call complexity in northern leopard frogs, Rana pipiens. Copeia 3:676–682

    Article  Google Scholar 

  45. Liberman AM, Delattre P, Cooper FS (1952) The role of selected stimulus-variables in the perception of the unvoiced stop consonants. Am J Psychol 65:497–516

    PubMed  CAS  Article  Google Scholar 

  46. Liberman AM, Harris KS, Hoffman HS, Griffith BC (1957) The discrimination of speech sounds within and across phoneme boundaries. J Exp Psychol 54:358–368

    PubMed  CAS  Article  Google Scholar 

  47. Liberman AM, Harris KS, Kinney JA, Lane H (1961) The discrimination of relative onset-time of the components of certain speech and nonspeech patterns. J Exp Psychol 61:379–388

    PubMed  CAS  Article  Google Scholar 

  48. Liff H (1969) Responses from single auditory units in the eighth nerve of the Leopard frog. J Acoust Soc Am 45:512–513

    PubMed  CAS  Article  Google Scholar 

  49. Lumani A, Zhang H (2010) Responses of neurons in the rat’s dorsal cortex of the inferior colliculus to monaural tone bursts. Brain Res 1351:115–129

    PubMed  CAS  Article  Google Scholar 

  50. Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    PubMed  CAS  Article  Google Scholar 

  51. Malone BJ, Semple MN (2001) Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. J Neurophysiol 86:1113–1130

    PubMed  CAS  Google Scholar 

  52. Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22:4625–4638

    PubMed  CAS  Google Scholar 

  53. McAlpine D, Jiang D, Shackleton TM, Palmer AR (2000) Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation. J Neurophysiol 83:1356–1365

    PubMed  CAS  Google Scholar 

  54. Mecham JS (1971) Vocalizations of the leopard frog, Rana pipiens, and three related Mexican species. Copeia 3:505–516

    Article  Google Scholar 

  55. Megela AL, Capranica RR (1983) A neural and behavioral study of auditory habituation in the bullfrog, Rana catesbeiana. J Comp Physiol A 151:423–434

    Article  Google Scholar 

  56. Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139–148

    PubMed  CAS  Article  Google Scholar 

  57. Moore BC (2008) Basic auditory processes involved in the analysis of speech sounds. Philos Trans R Soc Lond B Biol Sci 363:947–963

    PubMed  Article  Google Scholar 

  58. Mudry KM, Constantine-Paton M, Capranica RR (1977) Auditory sensitivity of the diencephalon of the leopard frog Rana p. pipiens. J Comp Physiol 114:1–13

    Article  Google Scholar 

  59. Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285:1405–1408

    PubMed  CAS  Article  Google Scholar 

  60. Muller JR, Metha AB, Krauskopf J, Lennie P (2001) Information conveyed by onset transients in responses of striate cortical neurons. J Neurosci 21:6978–6990

    PubMed  CAS  Google Scholar 

  61. Naatanen R (1995) The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear 16:6–18

    PubMed  CAS  Article  Google Scholar 

  62. Naatanen R, Alho K (1995) Mismatch negativity—a unique measure of sensory processing in audition. Int J Neurosci 80:317–337

    PubMed  CAS  Article  Google Scholar 

  63. Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) “Primitive intelligence” in the auditory cortex. Trends Neurosci 24:283–288

    PubMed  CAS  Article  Google Scholar 

  64. Narins PM, Capranica RR (1980) Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol 17:48–66

    PubMed  CAS  Article  Google Scholar 

  65. Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223

    Article  Google Scholar 

  66. O’Connor KN, Sutter ML (2000) Global spectral and location effects in auditory perceptual grouping. J Cogn Neurosci 12:342–354

    PubMed  Article  Google Scholar 

  67. Patterson RD, Nimmo-Smith I, Weber DL, Milroy R (1982) The deterioration of hearing with age: frequency selectivity, the critical ratio, the audiogram, and speech threshold. J Acoust Soc Am 72:1788–1803

    PubMed  CAS  Article  Google Scholar 

  68. Penna M, Lin WY, Feng AS (2001) Temporal selectivity by single neurons in the torus semicircularis of Batrachyla antartandica (Amphibia: Leptodactylidae). J Comp Physiol A 187:901–912

    CAS  Article  Google Scholar 

  69. Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885

    PubMed  Article  Google Scholar 

  70. Phillips DP, Hall SE, Harrington IA, Taylor TL (1998) “Central” auditory gap detection: a spatial case. J Acoust Soc Am 103:2064–2068

    PubMed  CAS  Article  Google Scholar 

  71. Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions. Proc R Soc Lond B Biol Sci 219:371–396

    PubMed  CAS  Article  Google Scholar 

  72. Pollak GD, Gittelman JX, Li N, Xie R (2011) Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: a comparison of bats with other mammals. Hear Res 273:134–144

    PubMed  Article  Google Scholar 

  73. Ponnath A, Farris HE (2010) Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis. J Comp Physiol A 196:613–628

    CAS  Article  Google Scholar 

  74. Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30:6991–6998

    PubMed  CAS  Article  Google Scholar 

  75. Rheinlaender J, Walkowiak W, Gerhardt HC (1981) Directional hearing in the green treefrog: a variable mechanism? Naturwissenschaften 67:430–431

    Article  Google Scholar 

  76. Ringo JL (1996) Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behav Brain Res 76:191–197

    PubMed  CAS  Article  Google Scholar 

  77. Ronken DA (1991) Spike discharge properties that are related to the characteristic frequency of single units in the frog auditory nerve. J Acoust Soc Am 90:2428–2440

    PubMed  CAS  Article  Google Scholar 

  78. Roth GL, Aitkin LM, Andersen RA, Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 182:661–680

    PubMed  CAS  Article  Google Scholar 

  79. Ryan MJ, Rand AS (2001) Feature weighting in signal recognition and discrimination by the túngara frog. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington DC, pp 86–101

    Google Scholar 

  80. Schul J, Mayo AM, Triblehorn JD (2012) Auditory change detection by a single neuron in an insect. J Comp Physiol A 198(9):695–704

    Article  Google Scholar 

  81. Searcy WA (1992) Song repertoire and mate choice in birds. Am Zool 32:71–80

    Google Scholar 

  82. Spitzer MW, Semple MN (1991) Interaural phase coding in auditory midbrain: influence of dynamic stimulus features. Science 254:721–724

    PubMed  CAS  Article  Google Scholar 

  83. Sun H, Wu SH (2008) Physiological characteristics of postinhibitory rebound depolarization in neurons of the rat’s dorsal cortex of the inferior colliculus studied in vitro. Brain Res 1226:70–81

    PubMed  CAS  Article  Google Scholar 

  84. Swets JA (1986) Indices of discrimination or diagnostic accuracy: their ROCs and implied models. Psychol Bull 99:100–117

    PubMed  CAS  Article  Google Scholar 

  85. Szymanski FD, Garcia-Lazaro JA, Schnupp JW (2009) Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102:1483–1490

    PubMed  Article  Google Scholar 

  86. Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS ONE 6:e23369

    PubMed  CAS  Article  Google Scholar 

  87. Tikhonravov D, Neuvonen T, Pertovaara A, Savioja K, Ruusuvirta T, Naatanen R, Carlson S (2010) Dose-related effects of memantine on a mismatch negativity-like response in anesthetized rats. Neuroscience 167:1175–1182

    PubMed  CAS  Article  Google Scholar 

  88. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    PubMed  CAS  Article  Google Scholar 

  89. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453

    PubMed  CAS  Article  Google Scholar 

  90. Viemeister NF, Bacon SP (1982) Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am 71:1502–1507

    PubMed  CAS  Article  Google Scholar 

  91. von der BW, Bauerle P, Kossl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29:13837–13849

    Article  CAS  Google Scholar 

  92. Wilczynski W, Endepols H (2007) Central auditory pathways in anuran amphibians: The anatomical basis of hearing and sound communication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 221–249

    Google Scholar 

  93. Wilczynski W, Rand AS, Ryan MJ (1995) The processing of spectral cues by the call analysis system of the túngara frog, Physalaemus-pustulosus. Anim Behav 49:911–929

    Article  Google Scholar 

  94. Wilson WW, Walton JP (2002) Background noise improves gap detection in tonically inhibited inferior colliculus neurons. J Neurophysiol 87:240–249

    PubMed  Google Scholar 

  95. Winer JA, Schreiner CE (2005) The inferior colliculus. Springer, New York

    Book  Google Scholar 

  96. Witte K, Farris HE, Ryan MJ, Wilczynski W (2005) How cricket frog females deal with a noisy world: habitat-related differences in auditory tuning. Behav Ecol 16:571–579

    Article  Google Scholar 

  97. Yang S, Lin W, Feng AS (2009) Wide-ranging frequency preferences of auditory midbrain neurons: roles of membrane time constant and synaptic properties. Eur J Neurosci 30:76–90

    PubMed  Article  Google Scholar 

  98. Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 385–430

    Google Scholar 

  99. Yost WA, Sheft S (1993) Auditory perception. In: Yost WA, Popper AN, Fay RR (eds) Human psychophysics. Springer, New York, pp 193–236

    Google Scholar 

  100. Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12:1165–1170

    PubMed  CAS  Article  Google Scholar 

  101. Zar JH (1999) Biostatistical analysis. Upper Saddle River, New Jersey: Prentice-Hall, Inc

  102. Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163–174

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank T. Weyand, C. Canavier, C. Chen, L. Harrison, B. Carlson, T. Forrest, W. Gordon, C. Regan, K. Imaizumi, and two anonymous reviewers for feedback on the project. KLH and HEF were supported in part by a Grass Faculty Fellowship at the Marine Biological Laboratory, Woods Hole, MA (2009). AP and HEF were supported by NIH grant P20RR016816 (to N. Bazan). KH was supported by NSF IOS-0940466.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamilton E. Farris.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ponnath, A., Hoke, K.L. & Farris, H.E. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A 199, 295–313 (2013). https://doi.org/10.1007/s00359-013-0794-x

Download citation

Keywords

  • Stimulus specific adaptation
  • Auditory stream
  • Stimulus change detection
  • Binaural
  • Frequency