Skip to main content
Log in

The modulation rate transfer function of a harbour porpoise (Phocoena phocoena)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

During echolocation, toothed whales produce ultrasonic clicks at extremely rapid rates and listen for the returning echoes. The auditory brainstem response (ABR) duration was evaluated in terms of latency between single peaks: 5.5 ms (from peak I to VII), 3.4 ms (I–VI), and 1.4 ms (II–IV). In comparison to the killer whale and the bottlenose dolphin, the ABR of the harbour porpoise has shorter intervals between the peaks and consequently a shorter ABR duration. This indicates that the ABR duration and peak latencies are possibly related to the relative size of the auditory structures of the central nervous system and thus to the animal’s size. The ABR to a sinusoidal amplitude modulated stimulus at 125 kHz (sensitivity threshold 63 dB re 1 μPa rms) was evaluated to determine the modulation rate transfer function of a harbour porpoise. The ABR showed distinct envelope following responses up to a modulation rate of 1,900 Hz. The corresponding calculated equivalent rectangular duration of 263 μs indicates a good temporal resolution in the harbour porpoise auditory system similar to the one for the bottlenose dolphin. The results explain how the harbour porpoise can follow clicks and echoes during echolocation with very short inter click intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABR:

Auditory brainstem response

EFR:

Envelope following response

ERB:

Equivalent rectangular bandwidth

ERD:

Equivalent rectangular duration

FFT:

Fast Fourier transform

ICI:

Inter click interval

MRTF:

Modulation rate transfer function

rms:

Root-mean-square

SAM:

Sinusoidal amplitude modulated

References

  • Andersen S (1970) Auditory sensitivity of the harbour porpoise Phocoena phocoena. In: Pilleri G (ed) Investigations of Cetacea, vol 2. University of Bern, Switzerland, pp 255–260

    Google Scholar 

  • Au WWL (1988) Sonar target detection and recognition by odontocetes. In: Nachtigall PE, Moore P (eds) Animal sonar: Processes and Performance. Plenum Press, USA, pp 451–465

    Chapter  Google Scholar 

  • Au WWL (1993) The sonar of dolphins. Springer, New York

    Book  Google Scholar 

  • Bullock T, Grinnell A, Ikezono E, Kameda K, Katsuki Y, Nomoto M, Sato O, Suga N, Yanagisawa K (1968) Electrophysiological studies of central auditory mechanisms in cetaceans. J Comp Physiol A 59(2):117–156

    Google Scholar 

  • Cook MLH, Varela RA, Goldstein JD, McCulloch SD, Bossart GD, Finneran JJ, Houser D, Mann DA (2006) Beaked whale auditory evoked potential hearing measurements. J Comp Physiol A 192(5):489–495. doi:10.1007/s00359-005-0086-1

    Article  Google Scholar 

  • Dolphin WF (2000) Electrophysiological measures of auditory processing in odontocetes. In: Au WWL, Popper AN, Fay RR (eds) Hearing by whales and dolphins, vol 12. Springer handbook of auditory research. Springer, New York, pp 294–329

    Chapter  Google Scholar 

  • Dolphin W, Mountain D (1992) The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals. Hear Res 58(1):70–78

    Article  PubMed  CAS  Google Scholar 

  • Dolphin WF, Au WWL, Nachtigall PE, Pawloski J (1995) Modulation rate transfer-functions to low-frequency carriers in 3 species of Cetaceans. J Comp Physiol A 177(2):235–245

    Article  Google Scholar 

  • Finneran JJ, London HR, Houser DS (2007) Modulation rate transfer functions in bottlenose dolphins (Tursiops truncatus) with normal hearing and high-frequency hearing loss. J Comp Physiol A 193(8):835–843

    Article  Google Scholar 

  • Houser DS, Finneran JJ (2006) A comparison of underwater hearing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods. J Acoust Soc Am 120(3):1713–1722. doi:10.1121/1.2229286

    Article  PubMed  Google Scholar 

  • Houser DS, Gomez-Rubio A, Finneran JJ (2008) Evoked potential audiometry of 13 Pacific bottlenose dolphins (Tursiops truncatus gilli). Marine Mamm Sci 24(1):28–41

    Article  Google Scholar 

  • Kastelein RA, Brunskoek P, Hagedoom M, Au WWL, de Haan D (2002) Audiogram of a harbour porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals. J Acoust Soc Am 112(1):334–344

    Article  PubMed  Google Scholar 

  • Ketten D (2000) Cetacean ears. In: Au WWL, Popper AN, Fay RR (eds) Hearing by whales and dolphins, vol 12. Springer handbook of auditory research. Springer, New York, pp 43–108

    Chapter  Google Scholar 

  • Kloepper LN, Nachtigall PE, Gisiner R, Breese M (2010) Decreased echolocation performance following high-frequency hearing loss in the false killer whale (Pseudorca crassidens). J Exp Biol 213:3717–3722

    Article  PubMed  CAS  Google Scholar 

  • Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21(2):179–192

    Article  PubMed  CAS  Google Scholar 

  • Møhl B, Andersen S (1973) Echolocation: high-frequency component in the click of the harbour porpoise (Phocoena ph. L.). J Acoust Soc Am 54:1368–1372

    Article  PubMed  Google Scholar 

  • Mooney TA, Nachtigall PE, Yuen MML (2006) Temporal resolution of the Risso’s dolphin, Grampus griseus, auditory system. J Comp Physiol A 192:373–380

    Article  Google Scholar 

  • Mooney TA, Nachtigall PE, Taylor KA, Rasmussen MH, Miller LA (2009) Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris). J Comp Physiol A 195(4):375–384. doi:10.1007/s00359-009-0415-x

    Article  Google Scholar 

  • Mooney TA, Li S, Ketten DR, Wang K, Wang D (2011) Auditory temporal resolution and evoked responses to pulsed sounds for the Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis). J Comp Physiol A 197:1149–1158

    Article  Google Scholar 

  • Moore PW, Hall RW, Friedl WA, Nachtigall PE (1984) The critical interval in dolphin echolocation: what is it? J Acoust Soc Am 76(1):314–317

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ears temporal window. J Acoust Soc Am 83(3):1102–1116

    Article  PubMed  CAS  Google Scholar 

  • Mulsow J, Reichmuth C (2007) Electrophysiological assessment of temporal resolution in pinnipeds. Aqua Mam 33(1):122–131

    Article  Google Scholar 

  • Nachtigall P, Mooney T, Taylor K, Miller L, Rasmussen M, Akamatsu T, Teilmann J, Linnenschmidt M, Vikingsson G (2008) Shipboard measurements of the hearing of the white-beaked dolphin Lagenorhynchus albirostris. J Exp Biol 211(4):642–647

    Article  PubMed  CAS  Google Scholar 

  • Pacini AF, Nachtigall PE, Kloepper LN, Linnenschmidt M, Sogorb A, Matias S (2010) Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials. J Exp Biol 213(18):3138–3143. doi:10.1242/jeb.044636

    Article  PubMed  CAS  Google Scholar 

  • Pacini AF, Nachtigall PE, Quintos CT, Schofield TD, Look DA, Levine GA, Turner JP (2011) Audiogram of a stranded Blainville’s beaked whale (Mesoplodon densirostris) measured using auditory evoked potentials. J Exp Biol 214(14):2409–2415

    Article  PubMed  Google Scholar 

  • Popov VV, Supin AY (1990) Auditory brain stem responses in characterization of dolphin hearing. J Comp Physiol A 166(3):385–393

    Article  PubMed  CAS  Google Scholar 

  • Popov VV, Supin AY (1998) Auditory evoked responses to rhythmic sound pulses in dolphins. J Comp Pysiol A 183:519–524

    Article  CAS  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang K, Xiao J, Li S (2005) Evoked-potential audiogram of the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis (L). J Acoust Soc Am 117:2728–2731

    Article  PubMed  Google Scholar 

  • Ridgway SH, Bullock TH, Carder DA, Seeley RL, Woods D, Galambos R (1981) Auditory brainstem response in dolphins. Proc Natl Acad Sci 78:1943–1947

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Fenton MB, Ofarrell MJ (1979) Echolocation and pursuit of prey by bats. Science 203(4375):16–21. doi:10.1126/science.758674

    Article  PubMed  CAS  Google Scholar 

  • Supin AY, Popov VV (1995a) Temporal resolution in the dolphin’s auditory system revealed by double- click evoked potential study. J Acoust Soc Am 97(4):2586–2593

    Article  PubMed  Google Scholar 

  • Supin AY, Popov VV (1995b) Envelope-following response and modulation transfer function in the dolphin’s auditory system. Hear Res 92(1–2):38–46

    Article  PubMed  CAS  Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Springer, London

    Book  Google Scholar 

  • Surlykke A, Bojesen O (1996) Integration time for short broad band clicks in echolocating FM-bats (Eptesicus fuscus). J Comp Physiol A 178(2):235–241

    Article  PubMed  CAS  Google Scholar 

  • Szymanski MD, Supin AY, Bain DE, Henry KR (1998) Killer whale (Orcinus orca) auditory evoked potentials to rhythmic clicks. Marine Mamm Sci 14(4):676–691

    Article  Google Scholar 

  • Szymanski MD, Bain DE, Kiehl K, Pennington S, Wong S, Henry KR (1999) Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms. J Acoust Soc Am 106(2):1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. Peninsula Publishing, Los Altos

    Google Scholar 

  • Vel’min V, Dubrovskiy N (1976) The critical interval of active hearing in dolphins. Sov Phys Acoust 2:351–352

    Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66(5):1364–1380

    Article  PubMed  CAS  Google Scholar 

  • Villadsgaard A, Wahlberg M, Tougaard J (2007) Echolocation signals of wild harbour porpoises, Phocoena phocoena. J Exp Biol 210(1):56–64. doi:10.1242/jeb.02618

    Article  PubMed  Google Scholar 

  • Wiegrebe L, Schmidt S (1996) Temporal integration in the echolocating bat, Megaderma lyra. Hear Res 102(1–2):35–42

    Article  PubMed  CAS  Google Scholar 

  • Yuen MML, Nachtigall PE, Breese M, Supin AY (2005) Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 118(4):2688–2695. doi:10.1121/1.2010350

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Danish Council for Independent Research, the Faculty of Science at the University of Southern Denmark, the Graduate School on Sense Organs, Nerve Systems, Behaviour, and Communication, and Fjord&Bælt. The animals at Fjord&Bælt are kept under the permission from the Danish Forest and Nature Agency (J. nr. SN 343/FY-0014 and 1996-3446-0021). The experiments were conducted in agreement with all current Danish laws and animal care was provided according to permit nr. DK-7-0001008. We thank Jakob Tougaard and Paul Nachtigall for detailed comments that improved earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meike Linnenschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linnenschmidt, M., Wahlberg, M. & Damsgaard Hansen, J. The modulation rate transfer function of a harbour porpoise (Phocoena phocoena). J Comp Physiol A 199, 115–126 (2013). https://doi.org/10.1007/s00359-012-0772-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0772-8

Keywords

Navigation