Journal of Comparative Physiology A

, Volume 199, Issue 2, pp 99–113 | Cite as

Systematic variations in microvilli banding patterns along fiddler crab rhabdoms

Original Paper


Polarisation sensitivity is based on the regular alignment of dichroic photopigment molecules within photoreceptor cells. In crustaceans, this is achieved by regularly stacking photopigment-rich microvilli in alternating orthogonal bands within fused rhabdoms. Despite being critical for the efficient detection of polarised light, very little research has focused on the detailed arrangement of these microvilli bands. We report here a number of hitherto undescribed, but functionally relevant changes in the organisation of microvilli banding patterns, both within receptors, and across the compound eye of fiddler crabs. In all ommatidia, microvilli bands increase in length from the distal to the proximal ends of the rhabdom. In equatorial rhabdoms, horizontal bands increase gradually from 3 rows of microvilli distally to 20 rows proximally. In contrast, vertical equatorial microvilli bands contain 15–20 rows of microvilli in the distal 30 µm of the rhabdom, shortening to 10 rows over the next 30 µm and then increase in length to 20 rows in parallel with horizontal bands. In the dorsal eye, horizontal microvilli occupy only half the cross-sectional area as vertical microvilli bands. Modelling absorption along the length of fiddler crab rhabdoms suggests that (1) increasing band length assures that photon absorption probability per band remains constant along the length of photoreceptors, indicating that individual bands may act as units of transduction or adaptation; (2) the different organisation of microvilli bands in equatorial and dorsal rhabdoms tune receptors to the degree and the information content of polarised light in the environment.


Microvilli banding Rhabdom Polarisation vision Dichroism Fiddler crab 


  1. Alkaladi A (2008) The functional anatomy of the fiddler crab compound eye. PhD Thesis, The Australian National University, CanberraGoogle Scholar
  2. Altevogt R, von Hagen HO (1964) Über die Orientierung von Uca tangeri Eydoux im Freiland. Z Morph Ökol Tiere 53:636–656CrossRefGoogle Scholar
  3. Arikawa K, Kawamata K, Suzuki T, Eguchi E (1987) Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. J Comp Physiol A 161:161–174PubMedCrossRefGoogle Scholar
  4. Ball EE, Kao LC, Stone RC, Land MF (1986) Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia Sergestidae) in relation to light-dark adaption and natural history. Phil Trans R Soc Lond B 313:251–270CrossRefGoogle Scholar
  5. Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vision Res 17:1019–1028PubMedCrossRefGoogle Scholar
  6. Chiussi R, Díaz H (2001) Multiple reference usage in the zonal recovery behaviour by the fiddler crab Uca cumulata. J Crust Biol 21:407–413CrossRefGoogle Scholar
  7. Cronin TW, Forward RB (1988) The visual pigments of crabs. I. Spectral properties. J Comp Physiol A 162:267–275CrossRefGoogle Scholar
  8. Davies A, Gowen BE, Krebs AM, Schertler GFX, Saibil HR (2001) Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. J Mol Biol 314:455–463PubMedCrossRefGoogle Scholar
  9. Dembowski J (1913) Über den Bau der Augen von Ocypode ceratophthalma Fabr. Zool Jb Anat 36:513–524Google Scholar
  10. Douglass JK, Forward RB (1989) The ontogeny of facultative superposition optics in a shrimp eye: hatching through metamorphosis. Cell Tissue Res 258:289–300CrossRefGoogle Scholar
  11. Eguchi E (1965) Rhabdom structure and receptor potentials in single crayfish retinular cells. J Cell Comp Physiol 66:411–429CrossRefGoogle Scholar
  12. Frantsevich L, Govardovski V, Gribakin F, Nikolajev G, Pichka V, Polanovsky A, Shevchenko V, Zolotov V (1977) Astroorientation in Lethrus (Coleoptera, Scarabaeidae). J Comp Physiol A 121:253–271CrossRefGoogle Scholar
  13. Frings S (2009) Primary processes in sensory cells: current advances. J Comp Physiol A 195:1–19CrossRefGoogle Scholar
  14. Gaten E, Herring PJ, Shelton PMJ, Johnson ML (1998) Comparative morphology of the eyes of postlarval Bresiliid shrimps from the region of hydrothermal vents. Biol Bull 194:267–280CrossRefGoogle Scholar
  15. Glantz RM (2007) The distribution of polarization sensitivity in the crayfish retinula. J Comp Physiol A 193:893–901CrossRefGoogle Scholar
  16. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin, pp 145–224Google Scholar
  17. Hemmi JM (2005) Predator avoidance in fiddler crabs: 2. The visual cues. Anim Behav 69:615–625CrossRefGoogle Scholar
  18. Hemmi JM, Zeil J (2003) Burrow surveillance in fiddler crabs—II. The sensory cues. J Exp Biol 206:3951–3961PubMedCrossRefGoogle Scholar
  19. Herrnkind WF (1966) The ability of young and adult sand fiddler crabs, Uca pugilator (Bosc), to orient to polarized light. Am Zool 6:298–299Google Scholar
  20. Herrnkind WF (1968) Adaptive visually-directed orientation in Uca pugilator. Am Zool 8:585–598Google Scholar
  21. How MJ, Pignatelli V, Temple SE, Marshall NJ, Hemmi JM (2012) High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J Exp Biol 215:2128–2134PubMedCrossRefGoogle Scholar
  22. Howard J, Blakeslee B, Laughlin SB (1987) The Intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B 231:415–435PubMedCrossRefGoogle Scholar
  23. Kleinlogel S, Marshall NJ (2006) Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol 209:4262–4272PubMedCrossRefGoogle Scholar
  24. Kunze P (1967) Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z Zellforschung 82:466–478CrossRefGoogle Scholar
  25. Kunze P, Boschek CB (1968) Elektronenmikroskopische Untersuchung zur Form der achten Retinulazelle bei Ocypode. Z Naturforsch 23:568b–569bGoogle Scholar
  26. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379PubMedCrossRefGoogle Scholar
  27. Land MF, Layne JE (1995) The visual control of behavior in fiddler crabs. 1. Resolution, thresholds and the role of the horizon. J Comp Physiol A 177:81–90CrossRefGoogle Scholar
  28. Land MF, Osorio DC (1990) Waveguide modes and pupil action in the eyes of butterflies. Proc R Soc B 241:93–100CrossRefGoogle Scholar
  29. Layne JE (1998) Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J Exp Biol 201:2253–2261PubMedGoogle Scholar
  30. Meyer-Rochow VB (1974) Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J Insect Physiol 20:573–589PubMedCrossRefGoogle Scholar
  31. Meyer-Rochow VB, Walsh S (1978) The eyes of mesopelagic crustaceans: III. Thysanopoda tricuspidata (Euphausiacea). Cell Tissue Res 195:59–79PubMedCrossRefGoogle Scholar
  32. Nalbach HO, Nalbach G, Forzin L (1989) Visual control of eye-stalk orientation in crabs: vertical optokinetics, visual fixation of the horizon, and eye design. J Comp Physiol A 165:577–587CrossRefGoogle Scholar
  33. Nässel DR, Waterman TH (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol A 131:205–216CrossRefGoogle Scholar
  34. Nilsson DE, Howard J (1989) Intensity and polarization of the eyeshine in butterflies. J Comp Physiol A 166:51–56CrossRefGoogle Scholar
  35. Nilsson D-E, Labhart T, Meyer E (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol A 161:645–658CrossRefGoogle Scholar
  36. Qiu X, Vanhoutte K, Stavenga D, Arikawa K (2002) Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res 307:371–379PubMedCrossRefGoogle Scholar
  37. Rajkumar P, Rollmann SM, Cook TA, Layne JE (2010) Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator. J Exp Biol 213:4240–4248PubMedCrossRefGoogle Scholar
  38. Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Phil Trans R Soc B 366:627–637PubMedCrossRefGoogle Scholar
  39. Rosenberg MS (2001) The systematics and taxonomy of fiddler crabs: a phylogeny of the genus Uca. J Crust Biol 21:839–869CrossRefGoogle Scholar
  40. Rosenberg J, Langer H (2001) Ultrastructural changes of rhabdoms of the eyes of Ocypode species in relation to different regimes of light and dark adaptation. J Crust Biol 21:345–353CrossRefGoogle Scholar
  41. Saibil HR (1982) An ordered membrane-cytoskeleton network in squid photoreceptor microvilli. J Mol Biol 158:435–456PubMedCrossRefGoogle Scholar
  42. Schwemer J (1989) Visual pigments of compound eyes—structure, photochemistry, and regeneration. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 112–133CrossRefGoogle Scholar
  43. Shaw SR (1969) Sense-cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eyes. Vision Res 9:1031–1040PubMedCrossRefGoogle Scholar
  44. Shaw SR, Stowe S (1982) Photoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea. Neurobiology: structure and function, vol. 3. Academic Press, New York, pp 291–367Google Scholar
  45. Shelton PMJ, Gaten E, Chapman CJ (1986) Accessory pigment distribution and migration in the compound eye of Nephrops norvegicus (L.) (Crustacea: Decapoda). J Exp Mar Biol Ecol 98:185–198CrossRefGoogle Scholar
  46. Smolka J, Hemmi JM (2009) Topography of vision and behaviour. J Exp Biol 212:3522–3532PubMedCrossRefGoogle Scholar
  47. Smolka J, Zeil J, Hemmi JM (2011) Natural visual cues eliciting predator avoidance in fiddler crabs. Proc R Soc B 278:3584–3592PubMedCrossRefGoogle Scholar
  48. Snyder AW (1973) Polarisation sensitivity of individual retinula cells. J Comp Physiol 83:331–360CrossRefGoogle Scholar
  49. Snyder AW, Laughlin SB (1975) Dichroism and absorption by photoreceptors. J Comp Physiol A 100:101–116CrossRefGoogle Scholar
  50. Stavenga DG (1989) Pigments in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 152–172CrossRefGoogle Scholar
  51. Stavenga DG (2003a) Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics. J Comp Physiol A 189:1–17Google Scholar
  52. Stavenga DG (2003b) Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J Comp Physiol A 189:189–202Google Scholar
  53. Stavenga DG, Hardie R (2011) Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors. J Comp Physiol A 197:227–241CrossRefGoogle Scholar
  54. Stowe S (1980a) Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res 211:419–440PubMedCrossRefGoogle Scholar
  55. Stowe S (1980b) Spectral sensitivity and retinal pigment movement in the crab Leptograpsus variegatus (Fabricius). J Exp Biol 87:73–98PubMedGoogle Scholar
  56. Stowe S (1982) Rhabdom synthesis in isolated eyestalks and retinae of the crab Leptograpsus variegatus. J Comp Physiol A 148:313–321CrossRefGoogle Scholar
  57. Stowe S (1983) A theoretical explanation of intensity-independent variation of polarisation sensitivity in Crustacean retinula cells. J Comp Physiol A 153:435–441CrossRefGoogle Scholar
  58. Toh Y (1987) Diurnal changes of rhabdom structures in the compound eye of the Grapsid crab, Hemigrapsus penicillatus. J Electron Microsc 36:213–223Google Scholar
  59. Warrant EJ, Nilsson D-E (1998) Absorption of white light in photoreceptors. Vision Res 38:195–207PubMedCrossRefGoogle Scholar
  60. Waterman TH (1975) The optics of polarization sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin, pp 339–371CrossRefGoogle Scholar
  61. Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, New York, pp 281–469Google Scholar
  62. Waterman TH, Fernández HR, Goldsmith TH (1969) Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J Gen Physiol 54:415–432PubMedCrossRefGoogle Scholar
  63. Wehner R, Labhart T (2006) Polarisation vision. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348Google Scholar
  64. Wunderer H, Seifert P, Pilstl F, Lange A, Smola U (1990) Crustacean-like rhabdoms at the dorsal rim of several dipteran eyes (Syrphidae, Tabanidae). Naturwissenschaften 77:343–345CrossRefGoogle Scholar
  65. Zeil J (1990) Substratum slope and the alignment of acute zones in semi-terrestrial crabs (Ocypode ceratophthalmus). J Exp Biol 152:573–576Google Scholar
  66. Zeil J, Al-Mutairi MM (1996) The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J Exp Biol 199:1569–1577PubMedGoogle Scholar
  67. Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25CrossRefGoogle Scholar
  68. Zeil J, Hofmann M (2001) Signals from ‘crabworld’: cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569PubMedGoogle Scholar
  69. Zeil J, Hemmi JM, Backwell PRY (2006) Fiddler crabs. Curr Biol 16:R40–R41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.ARC Centre of Excellence in Vision Science, Research School of Biology, Bld 46The Australian National UniversityCanberraAustralia
  3. 3.Queensland Brain InstituteUniversity of QueenslandSt LuciaAustralia

Personalised recommendations