Skip to main content

Advertisement

Log in

Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We recorded the responses of lateral line units in the midbrain torus semicircularis of goldfish, Carassius auratus, to a 50-Hz vibrating sphere and determined the unit’s spatial receptive fields for various distances between fish and sphere and for different directions of sphere vibration. All but one unit responded to the vibrating sphere with an increase in discharge rate. Only a proportion (25 %) of the units exhibited phase-locked responses. Receptive fields were narrow or broad and contained one, two or more areas of increased discharge rate. The data show that the receptive fields of toral lateral line units are in many respects similar to those of brainstem units but differ from those of afferent nerve fibres. The responses of primary afferents represent the pressure gradient pattern generated by a vibrating sphere and provide information about sphere location and vibration direction. Across the array of lateral line neuromasts, the fish brain in principle can derive this information. Nevertheless, toral units tuned to a distinct sphere location or sensitive to a distinct sphere vibration direction were not found. Therefore, it is conceivable that the torus semicircularis uses a population code to determine spatial location and vibration direction of a vibrating sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HMW:

Half maximum width

MON:

Medial octavolateralis nucleus

RF:

Receptive field

SEP:

Spatial event plot

TS:

Torus semicircularis

References

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the Axolotl, Ambystoma mexicanum. J Comp Physiol A 167:347–356

    Article  Google Scholar 

  • Batschelet E (1981) The Rayleigh test. Circular statistics in biology. Academic Press 54–58

  • Behrend O, Branoner F, Zhivkov Z, Ziehm U (2006) Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis. Eur J Neurosci 23:719–744

    Article  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in Zoology. Vol. 41. Gustav Fischer Verlag, Stuttgart, Jena, New York, pp 1–115

  • Bleckmann H (2006) The lateral line system of fish. In: Hara T, Zielinski B (eds) Sensory systems neuroscience: fish physiology, vol 25. Elsevier, Amsterdam, pp 411–453

    Chapter  Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 192:115–128

    Article  Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991a) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus spec. J Comp Neurol 314:452–466

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991b) The time course and frequency content of hydrodynamic events caused by moving fish, frogs and crustaceans. J Comp Physiol A 168:749–757

    PubMed  CAS  Google Scholar 

  • Blickhan R, Krick C, Zehren D, Nachtigall W, Breithaupt T (1992) Generation of a vortex chain in the wake of a subundulatory swimmer. Naturwi 79:220–221

    Article  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann MH (2007) Kármán vortex street detection by the lateral line. J Comp Physiol A 193:753–763

    Article  Google Scholar 

  • Claas B (1993) Wie analysiert das Seitenliniensystem die Laufrichtung von Oberflächenwellen? Untersuchungen am Krallenfrosch Xenopus laevis. Habiltation thesis, University of Bielefeld

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin. II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–415

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery JC (1992) Fibers innervating different parts of the lateral line system of an Antarctic Notothenioid, Trematomus bernachii, have similar frequency responses despite large variation in the peripheral morphology. Brain Behav Evol 40:217–233

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195:279–297

    Article  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:609–626

    Article  Google Scholar 

  • Ćurčić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–106

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still- and running-water. Zoology 107:135–151

    Article  PubMed  Google Scholar 

  • Engelmann J, Kröther S, Mogdans J, Bleckmann H (2003) Effects of running water on lateral line responses to moving objects. Brain Behav Evol 61:195–212

    Article  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    PubMed  CAS  Google Scholar 

  • Goulet J, Engelmann J, Chagnaud BP, Franosch JMP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17

    Article  Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Article  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200:795–797

    Article  PubMed  CAS  Google Scholar 

  • Kröther S, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J Exp Biol 205:1471–1484

    PubMed  Google Scholar 

  • Künzel S, Bleckmann H, Mogdans J (2011) Responses of brainstem lateral line units to different stimulus source locations and vibration directions. J Comp Physiol A 197:773–787

    Article  Google Scholar 

  • Liao JC (2007) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090

    Article  Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47:113–138

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182:659–676

    Google Scholar 

  • Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J Comp Physiol A 185:173–180

    Article  Google Scholar 

  • Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104:153–166

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50:261–283

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JC, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish Trematomus bernacchii. Brain Behav Ecol 40:209–216

    Article  CAS  Google Scholar 

  • Montgomery JC, Coombs S, Janssen J (1994) Form and function relationships in the lateral line systems: Comparative data from six species of antarctic notothenioid fish. Brain Behav Evol 44:299–306

    Article  PubMed  CAS  Google Scholar 

  • Morse (1948) Vibration and sound. McGraw Hill, New York

  • Münz H (1985) Single unit-activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • Oakley B, Schafer R (1978) Experimental neurobiology. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Plachta D, Mogdans J, Bleckmann H (1999) Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant amplitude and amplitude-modulated water wave stimuli. J Comp Physiol A 185:405–417

    Google Scholar 

  • Przybilla A, Kunze S, Rudert A, Bleckmann H, Brücker C (2010) Entraining in trout: a behavioural and hydrodynamic analysis. J Exp Biol 213:2976–2986

    Article  PubMed  Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131

    Article  PubMed  CAS  Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in fishes. Springer, New York, pp 459–480

    Chapter  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269:751–761

    Article  PubMed  Google Scholar 

  • Voges K, Bleckmann H (2011) Two-dimensional receptive fields of midbrain lateral line units in the goldfish, Carassius auratus. J Comp Physiol A 197:827–837

    Article  Google Scholar 

  • Weisstein EW (1998) The CRC concise encyclopedia of mathematics. CRC Press

  • Wojtenek W, Mogdans J, H Bleckmann (1998) Responses of midbrain lateral line units in the goldfish, Carassius auratus, to moving objects. Zoology 101:69–82

    Google Scholar 

  • Wubbels RJ (1992) Afferent response of a head canal neuromast of the ruff (Acerina cernua) lateral line. Comp Biochem Physiol A 102:19–26

    Article  Google Scholar 

  • Wullimann MF (1998) The central nervous system. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 245–282

    Google Scholar 

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

Download references

Acknowledgments

We thank V. Schlüssel for comments on the manuscript, W. Braun for taking care of the fish and S. Clifford for help with the data analysis scripts. The research reported in this paper was performed under the guidelines by current German animal protection law. Use of animals and experimental procedures were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, permission no. 50.203.2-BN 7, 14/05. This research was supported by the Bioinspired Concepts (BIC) program funded by the Air Force Office of Scientific Research, the BioSenSE program funded by the Defense Advanced Research Program Agency (DARPA) and the BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Mogdans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, G., Klein, A., Mogdans, J. et al. Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Physiol A 198, 639–653 (2012). https://doi.org/10.1007/s00359-012-0736-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0736-z

Keywords

Navigation