Journal of Comparative Physiology A

, Volume 198, Issue 7, pp 495–510 | Cite as

Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines

  • Zachary Aidala
  • Leon Huynen
  • Patricia L. R. Brennan
  • Jacob Musser
  • Andrew Fidler
  • Nicola Chong
  • Gabriel E. Machovsky Capuska
  • Michael G. Anderson
  • Amanda Talaba
  • David Lambert
  • Mark E. Hauber
Original Paper


Ultraviolet (UV) light-transmitted signals play a major role in avian foraging and communication, subserving functional roles in feeding, mate choice, egg recognition, and nestling discrimination. Sequencing functionally relevant regions of the short wavelength sensitive type 1 (SWS1) opsin gene that is responsible for modulating the extent of SWS1 UV sensitivity in birds allows predictions to be made about the visual system’s UV sensitivity in species where direct physiological or behavioral measures would be impractical or unethical. Here, we present SWS1 segment sequence data from representative species of three avian lineages for which visually based cues for foraging and communication have been investigated to varying extents. We also present a preliminary phylogenetic analysis and ancestral character state reconstructions of key spectral tuning sites along the SWS1 opsin based on our sequence data. The results suggest ubiquitous ultraviolet SWS1 sensitivity (UVS) in both paleognaths, including extinct moa (Emeidae), and parrots, including the nocturnal and flightless kakapo (Strigops habroptilus), and in most, but not all, songbird (oscine) lineages, and confirmed violet sensitivity (VS) in two suboscine families. Passerine hosts of avian brood parasites were included both UVS and VS taxa, but sensitivity did not co-vary with egg rejection behaviors. The results should stimulate future research into the functional parallels between the roles of visual signals and the genetic basis of visual sensitivity in birds and other taxa.


Avian communication Sensory ecology Perching birds SWS1 opsin Ultraviolet vision 



Major funding was provided by the Human Frontier Science Program to MEH and the NSF to ZA. We would like to thank Irby J. Lovette and the Cornell University Laboratory of Ornithology for providing our North American songbird samples from their frozen tissue collection (Melospiza melodia CUMV52030; Agelaius phoeniceus CUMV52398; Molothrus ater CUMV50922; Quiscalus quiscula CUMV50813; Dumetella carolinensis CUMV50532; Mimus polyglottos CUMV51469; Setophaga petechia CUMV51062; Passer domesticus CUMV50719; Hylocichla mustelina CUMV51591; Turdus migratorius CUMV44366; Sayornis phoebe CUMV52315; Tyrannus tyrannus CUMV50890). For the parrot DNA/tissue samples our thanks go to Siwo de Kloet (Avian Biotech, Florida, USA; Agapornis roseicollis, Eclectus roratus, Psittacula derbiana, Platycercus elegans, Eolophus roseicapillus), Gail Sutton, Natureland Zoo (Nelson, New Zealand; Psittacula krameri manillensis, Nymphicus hollandicus, Cacatua galerita), the New Zealand Department of Conservation (Nestor meridionalis, Nestor notabilis, Strigops habroptilus), and Christine Mander (New Zealand; Platycercus eximius). We would like to thank Joy Halverston (Zoogen, CA) for providing our extant ratite samples (Casuarius casuarius, Dromaius novaehollandiae, Struthio camelus, and Rhea americana). The Yale Peabody Museum of Natural History (YPM) kindly provided our tinamou (Tinamidae) (Crypturellus undulatus YPM 136994, Nothura boraquira YPM 136976, Nothoprocta ornata YPM 136964, Nothoprocta pentlandii YPM 136997, Rhynchotus rufescens YPM 100922), Manacus manacus YPM 137115 and second Casuarius casuarius (YPM 86855) samples. Finally, extinct moa samples Pachyornis elephantopus (CM SB301), Emeus crassus (CM Av13775), Euryapteryx gravis (OM Av9821), Euryapteryx curtus (AIM B6595ii), and Pachyornis geranoides (W336) were kindly provided by Canterbury Museum, Otago Museum, Auckland Museum, and Whanganui Museum, respectively. We would also like to thank two anonymous reviewers for their helpful comments on an earlier version of the manuscript. Samples were collected from live specimens following local animal ethics rules and regulations in New Zealand and the University of Auckland and in the USA and Hunter College of the City University of New York.

Supplementary material

359_2012_724_MOESM1_ESM.fasta (36 kb)
Supplementary material 1 (FASTA 35.7 kb)
359_2012_724_MOESM2_ESM.fasta (13 kb)
Supplementary material 2 (FASTA 12.7 kb)


  1. Aidala Z, Hauber ME (2010) Avian egg coloration and visual sensory ecology. Nat Educ Knowl 1:4Google Scholar
  2. Andersson S, Örnborg J, Andersson M (1998) Ultraviolet sexual dimorphism and assortative mating in blue tits. Proc R Soc Lond B 265:445–450CrossRefGoogle Scholar
  3. Arnold KE, Owens IPF, Marshall NJ (2002) Fluorescent signaling in parrots. Science 295:92PubMedCrossRefGoogle Scholar
  4. Ashwell KWS, Scofield RP (2008) Big birds and their brains: paleoneurology of the New Zealand moa. Brain Behav Evol 71:151–166PubMedCrossRefGoogle Scholar
  5. Avilés JM, Soler JJ, Pérez-Contreras T (2006) Dark nests and egg colour in birds: a possible functional role of ultraviolet reflectance in egg detectability. Proc R Soc Lond B 273:2821–2829CrossRefGoogle Scholar
  6. Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vision Res 34:1471–1478PubMedCrossRefGoogle Scholar
  7. Bennett ATD, Cuthill IC, Partridge JC, Maier EJ (1996) Ultraviolet vision and mate choice in zebra finches. Nature 380:433–435CrossRefGoogle Scholar
  8. Bennett ATD, Cuthill IC, Partridge JC, Lunau K (1997) Ultraviolet plumage colors predict mate preferences in starlings. Proc Natl Acad Sci USA 94:8618–8621PubMedCrossRefGoogle Scholar
  9. Berg ML, Bennett ATD (2010) The evolution of plumage colouration in parrots: a review. Emu 110:10–20CrossRefGoogle Scholar
  10. Brennan TLR (2010) Clutch predation in great tinamous Tinamus major and implications for the evolution of egg color. J Avian Biol 41:419–426CrossRefGoogle Scholar
  11. Briskie JV (2003) Frequency of egg rejection by potential hosts of the New Zealand cuckoos. Condor 105:719–727CrossRefGoogle Scholar
  12. Burrows CJ (1989) Moa browsing: evidence from the pyramid valley mire. NZ J Ecol 12:51–56Google Scholar
  13. Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1834–1852CrossRefGoogle Scholar
  14. Carvalho LS, Knott B, Berg ML, Bennett ATD, Hunt DM (2011) Ultraviolet-sensitive vision in long-lived birds. Proc R Soc Lond B 278:107–114CrossRefGoogle Scholar
  15. Cherry MI, Bennett ATD (2001) Egg colour matching in an African cuckoo, as revealed by ultraviolet-visible reflectance spectrophotometry. Proc R Soc Lond B 268:565–571CrossRefGoogle Scholar
  16. Corfield JR, Wild JM, Hauber ME, Parsons S, Kubke MF (2008) Evolution of brain size in the paleognath lineage, with an emphasis on New Zealand ratites. Brain Behav Evol 71:87–99PubMedCrossRefGoogle Scholar
  17. Corfield JR, Gsell AC, Brunton D, Heesy CP, Hall MI, Acosta ML, Iwaniuk AN (2011) Anatomical specializations for nocturnality in a critically endangered parrot, the kakapo (Strigops habroptilus). PLoS ONE 6:e22945PubMedCrossRefGoogle Scholar
  18. Cuthill IC (2006) Color perception. In: Hill GE, McGraw KJ (eds) Bird coloration. Harvard University Press, CambridgeGoogle Scholar
  19. Davies SJJF (2002) Ratites and tinamous. Oxford University Press, New York, p 310Google Scholar
  20. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1. Available from
  21. Fadzly N, Jack C, Schaefer HM, Burns KC (2009) Ontogenetic colour changes in an insular tree species: signaling to extinct browsing birds? New Phytol 184:495–501PubMedCrossRefGoogle Scholar
  22. Gill BJ (2010) Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. Te Papa Press, WellingtonGoogle Scholar
  23. Goth A, Evans S (2004) Social responses without early experience: Australian brush-turkey chicks use specific cues to aggregate with conspecifics. J Exp Biol 207:2199–2208PubMedCrossRefGoogle Scholar
  24. Groth JG, Barrowclough GF (1999) Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phyl Evol 12:115–123CrossRefGoogle Scholar
  25. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  26. Hackett SJ et al (2008) A phylogenetic study of birds reveals their evolutionary history. Science 320:1763–1768PubMedCrossRefGoogle Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  28. Hall MI, Ross CF (2007) Eye shape and activity pattern in birds. J Zool 271:437–444CrossRefGoogle Scholar
  29. Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703PubMedCrossRefGoogle Scholar
  30. Hart NS, Partridge JC, Cuthill IC (1998) Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). J Exp Biol 201:1433–1446PubMedGoogle Scholar
  31. Hauber ME, Sherman PW (2001) Self-referent phenotype matching: theoretical considerations and empirical evidence. Trends Neurosci 24:606–616CrossRefGoogle Scholar
  32. Hauber ME, Sherman PW, Paprika D (2000) Self-referent phenotype matching in a brood parasite: the armpit effect in brown-headed cowbirds (Molothrus ater). Anim Cog 3:113–117CrossRefGoogle Scholar
  33. Hauber ME, Russo SA, Sherman PW (2001) A password for species recognition in a brood-parasitic bird. Proc R Soc Lond B 268:1041–1048CrossRefGoogle Scholar
  34. Hausman F, Arnold KE, Marshall NJ, Owens IPF (2003) Ultraviolet signals in birds are special. Proc R Soc Lond B 270:61–67CrossRefGoogle Scholar
  35. Hill GE, McGraw KJ (2006) Bird coloration. Mechanisms and measurements, vol 1. Harvard University Press, CambridgeGoogle Scholar
  36. Honkavaara J, Koivula M, Korpimäki E, Siitari H, Vittala J (2002) Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98:505–511CrossRefGoogle Scholar
  37. Honza M, Polačiková L, Procházka P (2007) Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biol J Linn Soc 92:276–296CrossRefGoogle Scholar
  38. Horrocks M, D’Costa D, Wallace R, Gardner R, Kondo R (2004) Plant remains in coprolites: diet of a subalpine moa (Dinornithiformes) from southern New Zealand. Emu 104:149–156CrossRefGoogle Scholar
  39. Hubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ (2010) Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet 26:231–239PubMedCrossRefGoogle Scholar
  40. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  41. Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598PubMedCrossRefGoogle Scholar
  42. Hunt S, Kilner RM, Langmore NE, Bennett ATD (2003) Conspicuous, ultraviolet-rich mouth colours in begging chicks. Proc R Soc Lond B 270:S25–S28CrossRefGoogle Scholar
  43. Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Phil Trans R Soc Lond B 364:2941–2955CrossRefGoogle Scholar
  44. Huynen L, Gill BJ, Millar CD, Lambert DM (2010) Ancient DNA reveals extreme egg morphology and nesting behavior in New Zealand’s extinct moa. Proc Natl Acad Sci USA 107:16201–16207PubMedCrossRefGoogle Scholar
  45. Igic B, Greenwood DR, Palmer DJ, Cassey P, Gill BJ, Grim T, Brennan PLR, Basset SM, Battley PF, Hauber ME (2010a) Detecting pigments from colourful eggshells of extinct birds. Chemoecol 20:43–48CrossRefGoogle Scholar
  46. Igic B, Leuschner N, Parker KA, Ismar SMH, Gill BJ, Lovegrove TG, Millar CD, Hauber ME (2010b) Size dimorphism and avian-perceived sexual dichromatism in a New Zealand endemic bird, the whitehead Mohoua albicilla. J Morphol 27:697–704Google Scholar
  47. Jourdie V, Moureau B, Bennett ATD, Heeb P (2004) Ultraviolet reflectance by the skin of nestlings. Nature 431:262PubMedCrossRefGoogle Scholar
  48. Kilner RM (2006) The evolution of egg colour and patterning in birds. Biol Rev 81:383–406PubMedCrossRefGoogle Scholar
  49. López-Rull I, Celis P, Gil D (2007) Egg colour covaries with female expression of a male ornament in the spotless starling (Sturnus unicolor). Ethology 113:926–933CrossRefGoogle Scholar
  50. López-Rull I, Miksik I, Gil D (2008) Egg pigmentation reflects female and egg quality in the spotless starling Sturnus unicolor. Behav Ecol Sociobiol 62:1877–1884CrossRefGoogle Scholar
  51. Machovsky Capuska GE, Huynen L, Lambert D, Raubenheimer D (2011) UVS vision is rare in seabirds. Vision Res 51:1333–1337PubMedCrossRefGoogle Scholar
  52. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, version 2.75.
  53. Martin GR, Wilson K, Wild JM, Parsons S, Kubke MF, Corfield J (2007) Kiwi forego vision in the guidance of their nocturnal activities. PLoS ONE 2:e198PubMedCrossRefGoogle Scholar
  54. McLean IG, Waas JR (1987) Do cuckoo chicks mimic the begging calls of their hosts? Anim Behav 35:1896–1907CrossRefGoogle Scholar
  55. Moreno J, Morales J, Lobato E, Merino S, Tomás G, Martínez-de la Puente J (2005) Evidence for the signaling function of egg color in the pied flycatcher Ficedule hypoleuca. Behav Ecol 16:931–937CrossRefGoogle Scholar
  56. Mullen P, Pohland G (2008) Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150:59–68CrossRefGoogle Scholar
  57. Nyári Á, Benz B, Jønsson K, Fjeldså J, Moyle RG (2009) Phylogenetic relationships of fantails (Aves: Rhipiduridae). Zool Scr 38:553–561Google Scholar
  58. Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855–861PubMedCrossRefGoogle Scholar
  59. Ödeen A, Håstad O, Alström P (2010) Evolution of ultraviolet vision in shorebirds (Charadiiformes). Biol Lett 6:370–374PubMedCrossRefGoogle Scholar
  60. Ödeen A, Håstad O, Alström P (2011) Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol Biol 11:313PubMedCrossRefGoogle Scholar
  61. Pearn SM, Bennett ATD, Cuthill IC (2001) Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulatus. Proc R Soc Lond B 268:2273–2279CrossRefGoogle Scholar
  62. Peer BD, Sealy SG (2004) Correlates of egg rejection in hosts of the brown-headed cowbird. Condor 106:580–589CrossRefGoogle Scholar
  63. Phillips MJ, Gibb GC, Crimp EA, Penny D (2010) Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol 59:90–107PubMedCrossRefGoogle Scholar
  64. Polačiková L, Honza M, Procházka P, Toper J, Stokke BG (2007) Colour characteristics of the blunt egg pole: cues for recognition of parasitic eggs as revealed by reflectance spectrophotometry. Anim Behav 74:419–427CrossRefGoogle Scholar
  65. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  66. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  67. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  68. Schaefer HM, Schaefer V, Vorobyev M (2007) Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am Nat 169:S159–S169PubMedCrossRefGoogle Scholar
  69. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90CrossRefGoogle Scholar
  70. Shi Y, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:1173–11731Google Scholar
  71. Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma 11:7CrossRefGoogle Scholar
  72. Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011) Mesozoic retroposons reveal parrots as the closest relatives of passerine birds. Nat Commun 2:443PubMedCrossRefGoogle Scholar
  73. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680CrossRefGoogle Scholar
  74. Underwood TJ, Sealy SG (2008) UV reflectance of eggs of brown-headed cowbirds (Molothrus ater) and accepter and rejecter hosts. J Ornithol 149:313–321CrossRefGoogle Scholar
  75. van Hazel I, Santini F, Müller J, Chang BSW (2006) Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics. BMC Evol Biol 6:97PubMedCrossRefGoogle Scholar
  76. Werle E, Schneider C, Renner M, Volker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nuc Acids Res 22:4354–4355CrossRefGoogle Scholar
  77. Wilkie SE, Vissers PMAM, Das D, DeGrip WJ, Bowmaker JK, Hunt DM (1998) The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochem J 330:541–547PubMedGoogle Scholar
  78. Wilkie SE, Robinson PR, Cronin TW, Poopalasundarum S, Bowmaker JK, Hunt DM (2000) Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochem 39:7895–7901CrossRefGoogle Scholar
  79. Wood JR, Rawlence NJ, Rogers GM, Austin JJ, Worthy TH, Cooper A (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quat Sci Rev 27:2593–2602CrossRefGoogle Scholar
  80. Wright MW, Bowmaker JK (2001) Retinal photoreceptors of paleognathous birds: the ostrich (Struthio camelus) and rhea (Rhea americana). Vis Res 41:1–12PubMedCrossRefGoogle Scholar
  81. Yokoyama S, Shi Y (2000) Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett 486:167–172PubMedCrossRefGoogle Scholar
  82. Yokoyama S, Radlwimmer FB, Blow NS (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci USA 97:7366–7371Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zachary Aidala
    • 1
    • 2
  • Leon Huynen
    • 3
  • Patricia L. R. Brennan
    • 4
  • Jacob Musser
    • 5
  • Andrew Fidler
    • 6
  • Nicola Chong
    • 7
  • Gabriel E. Machovsky Capuska
    • 8
  • Michael G. Anderson
    • 9
  • Amanda Talaba
    • 10
  • David Lambert
    • 3
  • Mark E. Hauber
    • 1
    • 2
  1. 1.Biopsychology and Behavioral Neuroscience ProgramThe Graduate Center of City University of New YorkNew YorkUSA
  2. 2.Department of PsychologyHunter College of City University of New YorkNew YorkUSA
  3. 3.Griffith School of Environment and the School of Biomolecular and Physical SciencesGriffith UniversityBrisbaneAustralia
  4. 4.Department of BiologyUniversity of MassachusettsAmherstUSA
  5. 5.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  6. 6.Cawthron InstituteNelsonNew Zealand
  7. 7.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  8. 8.Nutritional Ecology and Coastal-Marine Research Groups, Institute of Natural SciencesMassey UniversityAucklandNew Zealand
  9. 9.Behaviour, Ecology and Conservation Group, Institute of Natural SciencesMassey University at AlbanyAucklandNew Zealand
  10. 10.Lab of OrnithologyCornell UniversityIthacaUSA

Personalised recommendations