Skip to main content
Log in

Olfactory learning in the stingless bee Tetragonisca angustula (Hymenoptera, Apidae, Meliponini)

Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Aguilar I (2004) Communication and recruitment for the collection of food in stingless bees: a behavioral approach, dissertation. PhD Dissertation, Utrecht University

  • Aguilar I, Fonseca A, Beismeijer C (2005) Recruitment and communication of food source location in three species of stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 36:313–324

    Article  Google Scholar 

  • Arenas A, Farina WM (2008) Age and rearing environment interact in the retention of early olfactory memories in honeybees. J Comp Physiol A 194:629–640

    Article  Google Scholar 

  • Arenas A, Fernández VM, Farina WM (2007) Floral odor learning within the hive affects honeybees’ foraging decisions. Naturwissenschaften 94:218–222

    Article  CAS  PubMed  Google Scholar 

  • Arenas A, Fernández VM, Farina WM (2008) Floral scents experienced within the colony affect long-term foraging preferences in honeybees. Apidologie 39:714–722

    Google Scholar 

  • Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327

    Article  Google Scholar 

  • Biesmeijer JC, Slaa EJ (2004) Information flow and organization of stingless bee foraging. Apidologie 35:143–157

    Article  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    Article  CAS  PubMed  Google Scholar 

  • Camargo JMF, Pedro SRM (1992) Systematics, phylogeny and biogeography of the Meliponinae (Hymenoptera, Apidae): a mini-review. Apidologie 23:509–522

    Article  Google Scholar 

  • Chabaud MA, Devaud JM, Pham-Delègue MH, Preat T, Kaiser L (2006) Olfactory conditioning of proboscis activity in Drosophila melanogaster. J Comp Physiol A 192:1335–1348

    Article  Google Scholar 

  • Chandra SBC, Hosler JS, Smith BH (2000) Heritable variation for latent inhibition and its correlation with reversal learning in Honeybees (Apis mellifera). J Comp Pshycol 114:86–97

    Article  CAS  Google Scholar 

  • Daly KC, Smith BH (2000) Associative olfactory learning in the moth Manduca sexta. J Exp Biol 203:2025–2038

    CAS  PubMed  Google Scholar 

  • De Marco R, Farina WM (2003) Trophallaxis in forager honeybees (Apis mellifera): resource uncertainty enhances begging contacts? J Comp Physiol A 189:125–134

    Google Scholar 

  • Dornhaus A, Chittka L (2005) Bumble bees store both food and information in honeypots. Behav Ecol 16:661–666

    Article  Google Scholar 

  • Farina WM (1996) Food-exchange by foragers in the hive—a means of communication among honey bees? Behav Ecol Sociobiol 38:59–64

    Article  Google Scholar 

  • Farina WM, Grüter C (2009) Trophallaxis: a mechanism of information transfer. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 173–187

    Google Scholar 

  • Farina WM, Grüter C, Díaz PC (2005) Social learning of floral odours inside the honeybee hive. Proc R Soc B 272:1923–1928

    Article  PubMed  Google Scholar 

  • Farina WM, Grüter C, Acosta LE, Mc Cabe SI (2007) Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94:55–60

    Article  CAS  PubMed  Google Scholar 

  • Fernández VM, Arenas A, Farina WM (2009) Volatile exposure within the honeybee hive and its effect on olfactory discrimination. J Comp Physiol A 95:759–768

    Article  Google Scholar 

  • Ferreira Grosso A, Bego LR (2002) Labor division, average life span, survival curve, and nest architecture of Tetragonisca angustula angustula (Hymenoptera, Apinae, Meliponini). Sociobiology 40(3):615–637

    Google Scholar 

  • Free JB (1969) Influence of the odour of a honeybee colony’s food stores on the behaviour of its foragers. Nature 222:778

    Article  Google Scholar 

  • Frings H (1944) The loci of olfactory end-organs in the honeybee, Apis mellifera Linn. J Exp Zool 97:123–134

    Article  CAS  Google Scholar 

  • Gerber B, Geberzahn N, Hellstern F, Klein J, Kowalksy O, Wüstenberg D, Menzel R (1996) Honey bees transfer olfactory memories established during flower visits to a proboscis extension paradigm in the laboratory. Anim Behav 52:1079–1085

    Article  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Article  Google Scholar 

  • Grüter C, Acosta LE, Farina WM (2006) Propagation of olfactory information within the honeybee hive. Behav Ecol Sociobiol 60:707–715

    Article  Google Scholar 

  • Grüter C, Balbuena MS, Farina WM (2008) Informational conflicts created by the waggle dance. Proc R Soc B 275:1321–1327

    Article  PubMed  Google Scholar 

  • Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60

    Article  PubMed  Google Scholar 

  • Hrncir M (2009) Mobilizing the foraging force mechanical signals in stingless bee recruitment. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 199–222

    Google Scholar 

  • Hrncir M, Barth FG, Tautz J (2006) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulous S, Claridge MF (eds) Insect sounds and communication. Physiology, behaviour, ecology and evolution. CRC Press, Boca Raton

  • Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 223–250

    Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie 31:81–91

    Article  Google Scholar 

  • Johnson LK (1983) Foraging strategies and the structure of stingless bee communities in Costa Rica. In: Jaisson P (ed) Social insects in the tropics, vol 2. University of Paris Nord, Paris, pp 31–58

    Google Scholar 

  • Kaiser L, Perez-Maluf R, Sandoz JC, Pham-Delegue MH (2003) Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Anim Behav 66:1077–1084

    Article  Google Scholar 

  • Kerr WE (1960) Evolution of the communication in bees and its role in speciation. Evolution 14:386–387

    Article  Google Scholar 

  • Kerr WE (1969) Some aspects of the evolution of social bees. Evol Biol 3:119–175

    Google Scholar 

  • Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents. A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten ReXexes von Pavlovs Typus bei der Honigbiene, Apis mellifera. J Fac Hokkaido Univ Serv VI Zool 13:458–464

    Google Scholar 

  • Laloi D, Pham-Delegue MH (2004) Bumble bees show asymmetrical discrimination between two odors in a classical conditioning procedure. J Insect Behav 17:385–396

    Article  Google Scholar 

  • Laloi D, Sandoz JC, Picard-Nizou AL, Pham-Delègue MH (1999) Olfactory conditioning of the proboscis extension reflex in the bumble bee Bombus terrestris. Ann Soc Entomol (France) 35:154–158

    Google Scholar 

  • Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z Vergl Physiol 41:405–434

    Article  Google Scholar 

  • Lunney GH (1970) Using analysis of variance with dichotomous dependent variable: an empirical study. J Educ Meas 7:263–269

    Article  Google Scholar 

  • Mc Cabe SI, Farina WM (2009) Odor information transfer in the stingless bee Melipona quadrifasciata: effect of in-hive experiences on classical conditioning of proboscis extension. J Comp Physiol A 195:113–122

    Article  Google Scholar 

  • Mc Cabe SI, Hartfelder K, Santana WC, Farina WM (2007) Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees. J Comp Physiol A 193:1089–1099

    Article  CAS  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Michener CD (2000) The bees of the world. The Johns Hopkins University Press, Baltimore, London

    Google Scholar 

  • Molet M, Chittka L, Raine NE (2009) How floral odours are learned inside the bumblebee (Bombus terrestris) nest. Naturwissenschaften 96:213–219

    Article  CAS  PubMed  Google Scholar 

  • Moure JS (2008) Moure’s bee catalogue. http://moure.cria.org.br/index

  • Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182

    Article  Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New York

    Google Scholar 

  • Sandoz JC, Laloi D, Odoux JF, Pham-Delègue MH (2000) Olfactory information transfer in the honeybee: compared efficiency of classical conditioning and early exposure. Anim Behav 59:1025–1034

    Article  PubMed  Google Scholar 

  • Sandoz JC, Pham-Delègue MH, Renou M, Wadhams LJ (2001) Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J Comp Physiol A 187:559–568

    Article  CAS  PubMed  Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2003) A stingless bee marks the feeding site in addition to the scent path (Scaptotrigona aff. deplis). Apidologie 34:237–248

    Article  Google Scholar 

  • Schwarz HF (1938) The stingless bees (Meliponidae) of British Guiana and some related form. Bull Am Museum Nat Hist LXXIV:437–508 (art. VII)

    Google Scholar 

  • Seeley T (1995) The wisdom of the hive. Harvard University Press, Cambridge

    Google Scholar 

  • Slaa EJ, Hughes W (2009) Local enhancement, local inhibition, eavesdropping, and the parasitism of social. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 147–164

    Google Scholar 

  • Slaa EJ, Wassenberg J, Beismeijer JC (2003) The use of field-based social information in eusocial foragers: local enhancement among nestmates and heterospecifics in stingless bees. Ecol Entomol 28:369–379

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Co, New York

    Google Scholar 

  • Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179

    Article  CAS  Google Scholar 

  • Toda NRT, Song J, Nieh JC (2009) Bumblebees exhibit the memory spacing effect. Naturwissenschaften 96:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Tomberlin JK, Rains GC, Allan SA, Sanford MR, Lewis WJ (2006) Associative learning of odor with food or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae). Naturwissenschaften 93:551–556

    Article  CAS  PubMed  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    Article  CAS  PubMed  Google Scholar 

  • Villa JD, Weiss MR (1990) Observations on the use of visual and olfactory cues by Trigona spp foragers. Apidologie 21:541–545

    Article  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Phys 37:1–238

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Watanabe H, Kobayashi Y, Sakura M, Matsumoto Y, Mizunami M (2003) Classical olfactory conditioning in the cockroach Periplaneta americana. Zool Sci 20:1447–1454

    Article  PubMed  Google Scholar 

  • Yáñez-Ordónez O, Trujano Ortega M, Llorente Bousquets J (2008) Patrones de distribución de las especies de la tribu meliponini (Hymenoptera: Apoidea: Apidae) en México. Interciencia 33:41–45

    Google Scholar 

Download references

Acknowledgments

This study was supported by funds from ANPCYT (01-1155), University of Buenos Aires (X 077) and CONICET (PIP 112-200801-00150) to WMF. We declare that our experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Farina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mc Cabe, S.I., Farina, W.M. Olfactory learning in the stingless bee Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). J Comp Physiol A 196, 481–490 (2010). https://doi.org/10.1007/s00359-010-0536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0536-2

Keywords

Navigation