Skip to main content
Log in

Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5°, whilst stimuli that contained only colour contrast were only detected at a visual angle of 15°. Bumblebees were able to detect these stimuli at a visual angle of 2.3° and 2.7°, respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B:

Blue

G:

Green

Y:

Yellow

RN:

Receptor noise

UV:

Ultraviolet

References

  • Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Chittka L (1996) Does bee colour vision predate the evolution of flower colour? Naturwissenschaften 83:136–138

    Article  CAS  Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in hymentoptera. J Comp Physiol A 170:545–563

    PubMed  CAS  Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388–388

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    Article  PubMed  Google Scholar 

  • Chittka L, Spaethe J (2007) Visual search and the importance of time in complex decision making by bees. Arthropod Plant Interact 1:37–44

    Article  Google Scholar 

  • de Brito Sanchez MG, Giurfa M, de Paula Mota TR, Gauthier M (2005) Electrophysiological and behavioural characterization of gustatory responses to antennal ‘bitter’ taste in honeybees. Eur J Neurosci 22:3161–3170

    Article  PubMed  Google Scholar 

  • Dornhaus A, Chittka L (2004) Why do honeybees dance. Behav Ecol Sociobiol 55:395–401

    Article  Google Scholar 

  • Dyer A (2006a) Bumblebees directly perceive variations in the spectral quality of illumination. J Comp Physiol A 192:333–338

    Article  Google Scholar 

  • Dyer AG (2006b) Bee discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae). Entomol Gen 28:257–268

    Google Scholar 

  • Dyer AG, Chittka L (2004a) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A 190:105–114

    Article  CAS  Google Scholar 

  • Dyer AG, Chittka L (2004b) Bumblebee search time without ultraviolet light. J Exp Biol 207:1683–1688

    Article  PubMed  Google Scholar 

  • Dyer AG, Chittka L (2004c) Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. J Comp Physiol A 190:759–763

    Google Scholar 

  • Dyer AG, Chittka L (2004d) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227

    Article  PubMed  CAS  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557

    Article  Google Scholar 

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Giurfa M, Vorobyev MV (1998) The angular range of a chromatic target detection by honeybees. J Comp Physiol A 183:101–110

    Article  Google Scholar 

  • Goldsmith TH, Butler BK (2003) The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus. J Comp Physiol A 189:135–142

    CAS  Google Scholar 

  • Goulson D, Peat J, Stout JC, Tucker J, Darvill B, Derwent LC, Hughes WOH (2002) Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency? Anim Behav 64:123–130

    Article  Google Scholar 

  • Heinrich B (2004) Bumblebee economics. Harvard University Press, Cambridge

    Google Scholar 

  • Helversen Ov (1972) Zur spektralen Unterschiedsempfindlichkeit der honigbiene. J Comp Physiol 80:439–472

    Article  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 187:215–224

    Article  PubMed  CAS  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2002) Discrimination of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 188:503–512

    Article  CAS  Google Scholar 

  • Judd DB, MacAdam DL, Wyszecki G (1964) Spectral distribution of typical daylight as a function of correlated color temperature. J Opt Soc Am 54:1031–1040

    Google Scholar 

  • Kapustjanskij A, Streinzer M, Paulus HF, Spaethe J (2007) Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct Ecol 21:1130–1136

    Article  Google Scholar 

  • Kevan PG (1972) Insect pollination of high arctic flowers. J Ecol 60:831–847

    Article  Google Scholar 

  • Kulikowski JJ, Walsh V (1991) On the limits of colour detection and discrimination. In: Kulikowski JJ, Walsh V, Murray JJ, Cronly-Dillion JR (eds) Vision and visual dysfunction: limits of vision. Macmillan, London, pp 202–220

    Google Scholar 

  • MacAdam DL (1942) Visual sensitivities to colour differences of daylight. J Opt Soc Am 32:247–274

    Article  Google Scholar 

  • MacAdam DL (1986) Color measurement. Theme and variations. Springer-Verlag, Berlin

    Google Scholar 

  • Macuda T, Gegear RJ, Laverty TM, Timney B (2001) Behavioural assessment of visual acuity in bumblebees (Bombus impatiens). J Exp Biol 204:559–564

    PubMed  CAS  Google Scholar 

  • Maddocks SA, Church SC, Cuthill IC (2001) The effects of light environment on prey choice by zebra finches. J Exp Biol 204:2509–2515

    PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB (1981) Electrophysiology and histology of the eye of the bumblebee Bombus hortorum (L.) (Hymenoptera: Apidae). J Roy Soc N Z 11:123–153

    Google Scholar 

  • Neumeyer C (1981) Chromatic adaption in the honeybee: successive color contrast and color constancy. J Comp Physiol 144:543–553

    Article  Google Scholar 

  • Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 5:e116

    Article  PubMed  CAS  Google Scholar 

  • Osorio D, Vorobyev M (2005) Photoreceptor sectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proc R Soc Lond B Biol Sci 272:1745–1752

    Article  CAS  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sherman G, Visscher PK (2002) Honeybee colonies achieve fitness through dancing. Nature 419:920–922

    Article  PubMed  CAS  Google Scholar 

  • Skorupski P, Döring T, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A 193:485–494

    Article  Google Scholar 

  • Sokal RR, Rohlf JR (1981) Biometry. Freeman and Company, San Francisco

    Google Scholar 

  • Spaethe J, Briscoe AD (2005) Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J Exp Biol 208:2347–2361

    Article  PubMed  CAS  Google Scholar 

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453

    Article  PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Nat Acad Sci USA 98:3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Lehrer M (1985) Temporal resolution of colour vision in the honeybee. J Comp Physiol A 157:579–586

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162:159–172

    Article  Google Scholar 

  • Takeuchi Y, Arikawa K, Kinoshita M (2006) Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol 209:2873–2879

    Article  PubMed  Google Scholar 

  • Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vis Res 41:639–653

    Article  PubMed  CAS  Google Scholar 

  • Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464–467

    Article  PubMed  CAS  Google Scholar 

  • Wellington WG (1974) Bumblebee ocelli and navigation at dusk. Science 183:550–551

    Article  PubMed  Google Scholar 

  • Wertlen AM, Niggebrügge C, Vorobyev M, Hempel de Ibarra N (2008) J Exp Biol (in press)

  • Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Martin Giurfa, Simon Laughlin, Christa Neumeyer, Daniel Osorio and Misha Vorobyev for suggestions about various aspects of the study. We are also grateful to Lars Chittka for making available data on bumblebee photoreceptor sensitivities during the project for our colour modelling, and to David Reser and two anonymous reviewers for comments on an earlier draft of the manuscript. AGD is grateful to the Alexander von Humboldt Foundation, USAF AOARD (064038 and 074080) and ARC DP0878968 for support. The US Government is authorised to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the US Government. The experiments comply with the “Principles of animal care,” publication no. 86-23, revised 1985 of the National Institute of Health, and also with the current laws of the countries in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian G. Dyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, A.G., Spaethe, J. & Prack, S. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194, 617–627 (2008). https://doi.org/10.1007/s00359-008-0335-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0335-1

Keywords

Navigation