Skip to main content
Log in

Olfactory discrimination ability of CD-1 mice for aliphatic aldehydes as a function of stimulus concentration

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Using an operant conditioning paradigm, we tested the ability of CD-1 mice to discriminate between members of a homologous series of aliphatic aldehydes presented at four different concentrations. We found that the mice were clearly capable of discriminating between all odorant pairs when stimuli were presented at concentrations of 1, 0.01, and 0.001 ppm (corresponding to four, two, and one log unit above the highest individual detection threshold) with no significant difference in performance between these concentrations. In contrast, the animals generally failed to discriminate above chance level when stimuli were presented at 0.0001 ppm (corresponding to the highest individual detection threshold) although stimuli were clearly detectable. Further, we found a significant negative correlation between discrimination performance and structural similarity of odorants in terms of differences in carbon chain length. These findings suggest that an increase in stimulus concentration of only one log unit above detection threshold appears to be sufficient for recruitment of additional subpopulations of odorant receptors to allow for qualitative recognition of aliphatic aldehydes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham NM, Spors H, Carleton A, Margrie TW, Kuner T, Schaefer AT (2004) Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44:865–876

    PubMed  CAS  Google Scholar 

  • Bodyak N, Slotnick B (1999) Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem Senses 24:637–645

    Article  PubMed  CAS  Google Scholar 

  • Cleland TA, Narla VA (2003) Intensity modulation of olfactory acuity. Behav Neurosci 117:1434–1440

    Article  PubMed  Google Scholar 

  • Doty RL, Laing DG (2003) Psychophysical measurement of human olfactory function, including odorant mixture assessment. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Marcel Dekker, New York, pp 203–228

    Google Scholar 

  • Fine-Levy JB, Derby CD (1991) Effects of stimulus intensity and quality on discrimination of odorant mixtures by spiny lobsters in an associative learing paradigm. Physiol Behav 49:1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Firestein S, Shepherd GM, Werblin FS (1990) Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones. J Physiol 430:135–158

    PubMed  CAS  Google Scholar 

  • Fried HU, Fuss SH, Korsching SI (2002) Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli. Proc Natl Acad Sci USA 99:3222–3227

    Article  PubMed  CAS  Google Scholar 

  • Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11:685–702

    Article  PubMed  CAS  Google Scholar 

  • Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 101:2156–2161

    Article  PubMed  CAS  Google Scholar 

  • Grosmaitre X, Vassalli A, Mombaerts P, Shepherd GM, Ma M (2006) Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc Natl Acad Sci USA 103:1970–1975

    Article  PubMed  CAS  Google Scholar 

  • Gross-Isseroff R, Lancet D (1988) Concentration-dependent changes of perceived odor quality. Chem Senses 13:191–204

    Article  Google Scholar 

  • Hudson R, Arriola A, Martinez-Gomez M, Distel H (2006) Effect of air pollution on olfactory function in residents of Mexico City. Chem Senses 31:79–85

    Article  PubMed  Google Scholar 

  • Johnson BA, Leon M (2000a) Odorant molecular length: one aspect of the olfactory code. J Comp Neurol 426:330–338

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA, Leon M (2000b) Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J Comp Neurol 422:496–509

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA, Farahbod H, Saber S, Leon M (2005) Effects of functional group position on spatial representations of aliphatic odorants in the rat olfactory bulb. J Comp Neurol 483:192–204

    Article  PubMed  CAS  Google Scholar 

  • Joshi D, Völkl M, Shepherd GM, Laska M (2006) Olfactory sensitivity for enantiomers and their racemic mixtures—a comparative study in CD-1 mice and spider monkeys. Chem Senses 31:655–664

    Article  PubMed  CAS  Google Scholar 

  • Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Krautwurst D, Yau KW, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–926

    Article  PubMed  CAS  Google Scholar 

  • Laing DG, Legha PK, Jinks AL, Hutchinson I (2003) Relationship between molecular structure, concentration and odor qualities of oxygenated aliphatic molecules. Chem Senses 28:57–69

    Article  PubMed  CAS  Google Scholar 

  • Lancet D, Sadovsky E, Seidemann E (1993) Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system. Proc Natl Acad Sci USA 90:3715–3719

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Shepherd GM (2007) Olfactory discrimination ability of CD-1 mice for a large array of enantiomers. Neuroscience 144:295–301

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Teubner P (1999) Olfactory discrimination ability for homologous series of aliphatic alcohols and aldehydes. Chem Senses 24:263–270

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Galizia CG, Giurfa M, Menzel R (1999a) Olfactory discrimination ability and odor structure–activity relationships in honeybees. Chem Senses 24:429–438

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Trolp S, Teubner P (1999b) Odor structure–activity relationships compared in human and nonhuman primates. Behav Neurosci 113:998–1007

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Wieser A, Hernandez Salazar LT (2005) Olfactory responsiveness to two odorous steroids in three species of nonhuman primates. Chem Senses 30:505–511

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Joshi D, Shepherd GM (2006) Olfactory sensitivity for aliphatic aldehydes in CD-1 mice. Behav Brain Res 167:349–354

    Article  PubMed  CAS  Google Scholar 

  • Leon M, Johnson BA (2003) Olfactory coding in the mammalian olfactory bulb. Brain Res Rev 42:23–32

    Article  PubMed  Google Scholar 

  • McBride K, Slotnick B (2006) Discrimination between the enantiomers of carvone and those of terpinen-4-ol in normal rats and those with lesions of the olfactory bulbs. J Neurosci 26:9892–9901

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus W (1957) Wahrnehmungsschwelle und Erkennungsschwelle beim Riechen des Hundes im Vergleich zu den Riechwahrnehmungen des Menschen. Z Vergl Physiol 39:624–633

    Article  Google Scholar 

  • Pelz C, Gerber B, Menzel R (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J Exp Biol 200:837–847

    PubMed  CAS  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Röck F, Mueller S, Weimar U, Rammensee HG, Overath P (2006) Comparative analysis of volatile constituents from mice and their urine. J Chem Ecol 32:1333–1346

    Article  PubMed  Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, Acevedo HP, Sherrill L (2006) Effects of concentration and sniff flow rate on the rat electroolfactogram. Chem Senses 31:581–593

    Article  PubMed  Google Scholar 

  • Stuck BA, Frey S, Freiburg C, Hörmann K, Zahnert T, Hummel T (2006) Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin Neurophysiol 117:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Wilson DA, Stevenson RJ (2006) The relationship between stimulus intensity and perceptual quality. In: Wilson DA, Stevenson RJ (eds) Learning to smell. Johns Hopkins University Press, Baltimore, pp 64–75

    Google Scholar 

  • Wright GA, Smith BH (2004) Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera). Chem Senses 29:127–135

    Article  PubMed  Google Scholar 

  • Xu F, Liu N, Kida I, Rothman DL, Hyder F, Shepherd GM (2003) Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb. Proc Natl Acad Sci USA 100:11029–11034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GMS is supported by NIH grant (5 R01 DC00086-38) and the Human Brain Project. The experiments reported here comply with the Guide for the Care and Use of Laboratory Animals (National Institutes of Health Publication no. 86-23, revised 1985) and were performed according to a protocol approved by the Yale University Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Laska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laska, M., Joshi, D. & Shepherd, G.M. Olfactory discrimination ability of CD-1 mice for aliphatic aldehydes as a function of stimulus concentration. J Comp Physiol A 193, 955–961 (2007). https://doi.org/10.1007/s00359-007-0248-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0248-4

Keywords