Journal of Comparative Physiology A

, Volume 193, Issue 6, pp 591–600 | Cite as

Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis

  • Birgit GreinerEmail author
  • Thomas W. Cronin
  • Willi A. Ribi
  • William T. Wcislo
  • Eric J. Warrant
Original Paper


The presence of a specialised dorsal rim area with an ability to detect the e-vector orientation of polarised light is shown for the first time in a nocturnal hymenopteran. The dorsal rim area of the halictid bee Megalopta genalis features a number of characteristic anatomical specialisations including an increased rhabdom diameter and a lack of primary screening pigments. Optically, these specialisations result in wide spatial receptive fields (Δρ = 14°), a common adaptation found in the dorsal rim areas of insects used to filter out interfering effects (i.e. clouds) from the sky. In this specialised eye region all nine photoreceptors contribute their microvilli to the entire length of the ommatidia. These orthogonally directed microvilli are anatomically arranged in an almost linear, anterior–posterior orientation. Intracellular recordings within the dorsal rim area show very high polarisation sensitivity and a sensitivity peak within the ultraviolet part of the spectrum.


Insects Dim light vision Dorsal rim area Polarisation sensitivity Nocturnal navigation 



We would like to thank Thomas Labhart for valuable comments on the manuscript, Jamie Theobald for help with fieldwork and the staff of the Smithonian Tropical Research Institute for their help and ANAM of the Republic of Panama for permission to collect and export bees for this study. The histological work was partly done at the Centre for Visual Sciences, Research School of Biological Sciences, Australian National University. B.G. is thankful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. is grateful for the support of a Smithsonian Short-Term Research Fellowship, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support. W.T.W. is grateful for general research funds from STRI and T.W.C for support from the NSF and the Air Force Office of Scientific Research.


  1. Aepli F, Labhart T, Meyer EP (1985) Structural specializations of the cornea and retina at the dorsal rim of the compound eye in hymenopteran insects. Cell Tissue Res 239:19–24CrossRefGoogle Scholar
  2. Barta A, Horvath G (2004) Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. J Theor Biol 226:429–437PubMedCrossRefGoogle Scholar
  3. Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128PubMedCrossRefGoogle Scholar
  4. Brines ML, Gould JL (1982) Skylight polarisation patterns and animal orientation. J Exp Biol 96:69–91Google Scholar
  5. Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthopera, Grylloidea). Zool Jb Physiol 83:502–525Google Scholar
  6. Coulson KL (1988) Polarization and intensity of light in the atmosphere. A. Deepak Publishing, HamptonGoogle Scholar
  7. Cronin TW, Warrant EJ, Greiner B (2006) Celestial polarization patterns during twilight. Appl Opt 45:5582–5589PubMedCrossRefGoogle Scholar
  8. Dacke M, Nilsson DE, Warrant EJ, Blest AD, Land MF, O’Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473CrossRefGoogle Scholar
  9. Dacke M, Nordstrom P, Scholtz CH, Warrant EJ (2002) A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum. J Comp Physiol A 188:211–216CrossRefGoogle Scholar
  10. Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ (2003) Animal behaviour: insect orientation to polarized moonlight. Nature 424:33PubMedCrossRefGoogle Scholar
  11. Dacke M, Byrne MJ, Scholtz CH, Warrant EJ (2004) Lunar orientation in a beetle. Proc R Soc Lon B Biol Sci 271:361–365CrossRefGoogle Scholar
  12. Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol A 86:37–53CrossRefGoogle Scholar
  13. Egelhaaf A, Dambach M (1983) Giant rhabdomes in a specialized region of the compound eye of a cricket—Cycloptiloides canariensis (Insecta, Gryllidae). Zoomorph 102:65–77CrossRefGoogle Scholar
  14. Eggers A, Gewecke M (1993) The dorsal rim area of the compound eye and polarisation vision in the desert locust (Schistocerca gregaria). In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 101–109Google Scholar
  15. Gál J, Horváth G, Barta A, Wehner R (2001) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit. J Geophys Res 106:22647–22653CrossRefGoogle Scholar
  16. Goldsmith TH, Wehner R (1977) Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol 70:453–490PubMedCrossRefGoogle Scholar
  17. Greiner B, Ribi WA, Warrant EJ (2004) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390PubMedCrossRefGoogle Scholar
  18. Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets—a behavioral study. J Comp Physiol A 165:315–319CrossRefGoogle Scholar
  19. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280CrossRefGoogle Scholar
  20. Kelber A, Warrant EJ, Pfaff M, Wallen R, Theobald JC, Wcislo WT, Raguso R (2006) Light intensity limits the foraging activity in nocturnal and crepuscular bees. Behav Ecol 17:63–72CrossRefGoogle Scholar
  21. Kleinlogel S, Marshall J, Horwood JM, Land MF (2006) Neuroarchitecture of the color and polarisation vision system of the stomatopod Haptosquilla. J Comp Neurol 467:326–342CrossRefGoogle Scholar
  22. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J Comp Physiol A 141:19–30CrossRefGoogle Scholar
  23. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7CrossRefGoogle Scholar
  24. Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neurone. J Exp Biol 202:757–770PubMedGoogle Scholar
  25. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379PubMedCrossRefGoogle Scholar
  26. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296CrossRefGoogle Scholar
  27. Laughlin SB, Menzel R, Snyder AW (1975) Membranes, dichroism and receptor senstivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Heidelberg, pp 237–259Google Scholar
  28. Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee’s compound eye. Cell Tissue Res 216:491–501PubMedCrossRefGoogle Scholar
  29. Nilsson DE, Warrant EJ (1999) Visual discrimination: Seeing the third quality of light. Curr Biol 9:535–537CrossRefGoogle Scholar
  30. Nilsson D-E, Labhart T, Meyer E (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol A 161:645–658CrossRefGoogle Scholar
  31. Ribi WA (1976) A Golgi-electron microscope method for insect nervous tissue. Stain Technol 51:13–16PubMedGoogle Scholar
  32. Ribi WA (1978) A unique hymenopteran compound eye. The retina fine structure of the digger wasp Sphex cognatus Smith (Hymenoptera, Shecidae). Zool Jb Anat 100:299–342Google Scholar
  33. Riley JR, Reynolds DR (1986) Orientation at night by high-flying insects. In: Danthanarayana W (ed) Insect flight: dispersal and migration. Springer, Heidelberg, pp 71–87Google Scholar
  34. Rossel S (1989) Polarization sensitivity in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Heidelberg, pp 298–316Google Scholar
  35. Rozenberg GV (1966) Twilight: a study in atmospheric optics. Plenum Press, New YorkGoogle Scholar
  36. Schinz RH (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162:23–34PubMedCrossRefGoogle Scholar
  37. Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255:480–482PubMedCrossRefGoogle Scholar
  38. Sommer EW (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene, Apis mellifera (Hymeoptera). Universität ZürichGoogle Scholar
  39. von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148CrossRefGoogle Scholar
  40. von Frisch K (1965) Die Tanzsprache und Orientierung der Bienen. Springer, HeidelbergGoogle Scholar
  41. von Helversen O, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol 94:33–47CrossRefGoogle Scholar
  42. Warrant EJ, McIntyre PD (1993) Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 40:413–461PubMedCrossRefGoogle Scholar
  43. Warrant EJ, Kelber A, Gislén A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318PubMedCrossRefGoogle Scholar
  44. Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology. Springer, Heidelberg, pp 281–469Google Scholar
  45. Wcislo WT, Arneson L, Roesch K, Gonzalez V, Smith A, Fernandez H (2004) The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? Biol J Linn Soc 83:377–387CrossRefGoogle Scholar
  46. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology. Springer, Heidelberg, pp 287–616Google Scholar
  47. Wehner R (1997) The ant’s celestial compass system: spectral and polarisation channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185Google Scholar
  48. Wehner R, Labhart T (2006) Polarisation Vision. In: Warrant EJ, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348Google Scholar
  49. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Birgit Greiner
    • 1
    • 2
    Email author
  • Thomas W. Cronin
    • 3
  • Willi A. Ribi
    • 4
  • William T. Wcislo
    • 5
  • Eric J. Warrant
    • 1
  1. 1.Department of Cell and Organism BiologyLund UniversityLundSweden
  2. 2.Life SciencesDalhousie UniversityHalifaxCanada
  3. 3.Department of Biological SciencesUMBCBaltimoreUSA
  4. 4.University of Human Sciences of the Principality of LiechtensteinTriesenPrincipality of Liechtenstein
  5. 5.Smithsonian Tropical Research InstituteBalboaRepublic of Panama

Personalised recommendations