Skip to main content
Log in

Finite element modeling of arachnid slit sensilla—I. The mechanical significance of different slit arrays

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

An Erratum to this article was published on 24 April 2007

Abstract

Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits‘ centerlines, load direction, lateral distance S, longitudinal shift λ, and difference in slit length Δl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift λ substantially influences slit compression. A change of λ from 0 to 0.85 l causes changes of up to 420% in D c. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B :

Shape parameter in C- and S-shaped slits

b :

Width of slit

D :

Slit face displacement

D c :

Slit face displacement at center of slit

D *c :

Calculated slit face displacement at center of slit

D sc :

Slit face displacement at center of single isolated slit

E r :

Reference Young’s modulus

l :

Length of slit

l 0 :

Length of largest slit in array

l / b :

Aspect ratio (length/width) of slit

λ:

Longitudinal shift between positions of neighboring slits

R :

Radius of circular arrangement of inner tips of slits in fan-like arrays

S :

Lateral spacing between neighboring slits

α:

Angle subtended by entire fan-like arrangements

Δl :

Difference in length of neighboring slits

ɛa :

Applied far-field strain

ɛa,r :

Reference applied far-field strain

Φ:

In-plane angle of unidirectional load

λ:

Longitudinal shift between slits

σa :

Applied far-field stress

σa,r :

Reference applied far-field stress

References

  • Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys Araneae). Z Zellforsch 112:212–246

    Article  PubMed  CAS  Google Scholar 

  • Barth FG (1972a) Die Physiologie der Spaltsinnesorgane. I. Modellversuche zur Rolle des cuticularen Spaltes beim Reiztransport. J Comp Physiol 78:315–336

    Article  Google Scholar 

  • Barth FG (1972b) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanorezeptors. J Comp Physiol 81:159–186

    Article  Google Scholar 

  • Barth FG (1973) Microfiber reinforcement of an arthropod cuticle; laminated composite material in biology. Z Zellforsch 144:409–433

    Article  PubMed  CAS  Google Scholar 

  • Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow, pp 112–141

  • Barth FG (2002a) A spider’s world: senses and behavior. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barth FG (2002b) Spider senses-technical perfection and biology. Zoology 105:271–285

    Article  Google Scholar 

  • Barth FG, Bohnenberger J (1978) Lyriform slit sense organ: thresholds and stimulus amplitude ranges in a multi-unit mechanoreceptor. J Comp Physiol 125:37–43

    Article  Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–369

    Article  Google Scholar 

  • Barth FG, Stagl J (1976) The slit sense organs of arachnids; a comparative study of their topography on the walking legs (Chelicerata, Arachnida). Zoomorphology 86:1–23

    Article  Google Scholar 

  • Barth FG, Wadepuhl M (1975) Slit sense organs on the scorpion leg (Androctonus australis L., Buthidae). J Morphol 145(2):209–228

    Article  Google Scholar 

  • Barth FG, Ficker E, Federle HU (1984) Model studies on the mechanical significance of grouping in spider slit sensilla (Chelicerata, Araneida). Zoomorphology 104:204–215

    Article  Google Scholar 

  • Blickhan R (1983) Dehnungen im Außenskelett von Spinnen. Ph.D. thesis, University of Frankfurt am Main

  • Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157:115–147

    Article  Google Scholar 

  • Brüssel A (1987) Belastungen und Dehnungen im Spinnenskelett unter natürlichen Verhaltensbedingungen. Ph.D. thesis, University of Frankfurt am Main

  • French AS, Torkkeli PH, Seyfarth E-A (2002) From stress and strain to spikes: mechanotransduction in spider slit sensilla. J Comp Physiol A 188:739–752

    Article  CAS  Google Scholar 

  • Gorbatikh L, Kachanov M (2000) A simple technique for constructing the full stress and displacement fields in elastic plates with multiple cracks. Eng Fract Mech 66:51–63

    Article  Google Scholar 

  • Hößl B, Böhm HJ, Rammerstorfer FG, Barth FG (2005) Mechanoreception in the exoskeleton of arachnids: engineering meets biology. In: Proceedings 3rd IASTED Conference Biomech, Benidorm, pp 44–48

  • Hößl B, Böhm HJ, Rammerstorfer FG, Müllan R, Barth FG (2006) Studying the deformation of arachnid slit sensilla with a fracture mechanical approach. J Biomech 39:1761–1768

    Article  PubMed  Google Scholar 

  • Kachanov M (1994) Elastic solids with many cracks and related problems. Adv Appl Mech 30:259–445

    Article  Google Scholar 

  • Müllan R (2005) Feinbau und Rekonstruktion der Cuticulastrukturen lyraförmiger Sinnesorgane der Spinne Cupiennius salei. Diploma thesis, University of Vienna

  • Skordos A, Chan C, Jeronimidis G, Vincent JFV (2002) A novel strain sensor based on the campaniform sensillum of insects. Philos Trans R Soc Lond A 360:239–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant P16348 of the Austrian Science Foundation (FWF) to FGB and FGR. We thank Rainer Müllan for providing Fig. 1a, b, and two referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich G. Barth.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00359-007-0226-x

Appendix

Appendix

Within the linear regime of the material the face displacements at the center of a given slit, D * c , can be evaluated as a function of the slit length l 0 and the far-field strain ɛ a as

$$D^{*}_{{\rm c}} = \frac{{D_{{\rm c}}}}{{D_{{{\rm sc}}}}} \cdot \frac{{D_{{{\rm sc}}}}}{{l_{0}}} \cdot l_{0} \cdot \frac{{\varepsilon _{{\rm a}}}}{{\varepsilon _{{\rm a,r}}}}.$$

The value for D c /D sc depends on the geometrical configuration and is obtained from one of the diagrams in Figs. 5, 6, 8–11 for the required aspect ratio l 0 /b. The “reference values” for the single slit under normal loading, D sc / l 0 and ɛ a,r, are taken from Table 1. In case the far-field stress σa is given rather than the far-field strain, the relationship

$$ D_{{\rm c}}^{*} = \frac{{D_{{\rm c}} }} {{D_{{{\rm sc}}} }} \cdot \frac{{D_{{\rm sc}} }} {{l_0 }} \cdot l_0 \cdot \frac{{E_{{\rm r}} }} {E} \cdot \frac{{\sigma _{{\rm a}} }} {{\sigma _{{\rm a,r}} }} $$

must be used, in which the quotient E r /E accounts for the effects of the Young’s modulus.

For example at the mid-length position of the central slit (slit 3) in the oblique bar formation (Fig. 3f) in a disc with Young’s modulus E = 17 GPa, with a length of l 0 = 100 μm, a width of b = 1 μm, a lateral spacing ofs S/l 0 =  0.04, and a longitudinal shift of λ / l 0 =  0.85, which is loaded by a compressive far-field stress of σ=−500 kPa, this procedure gives

$$D^{*}_{{\rm c}} = 4.2 \times 5.034 \cdot 10^{{- 5}} \cdot 100 \times 10^{{- 6}} \cdot \frac{{18 \times 10^{9}}}{{17 \times 10^{9}}} \cdot \frac{{- 500 \times 10^{3}}}{{- 0.45 \times 10^{6}}}{\hbox{m}} = 24.9\,{\hbox{nm}},$$

where D cD sc ≈ 4.2 is taken from Fig. 6b.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hößl, B., Böhm, H.J., Rammerstorfer, F.G. et al. Finite element modeling of arachnid slit sensilla—I. The mechanical significance of different slit arrays. J Comp Physiol A 193, 445–459 (2007). https://doi.org/10.1007/s00359-006-0201-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0201-y

Keywords

Navigation