Skip to main content
Log in

Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Many insects possess smooth adhesive pads on their legs, which adhere by thin films of a two-phasic secretion. To understand the function of such fluid-based adhesive systems, we simultaneously measured adhesion, friction and contact area in single pads of stick insects (Carausius morosus). Shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity-effect of a continuous fluid film. However, measurements of the remaining force 2 min after a sliding movement show that adhesive pads can sustain considerable static friction. Repeated sliding movements and multiple consecutive pull-offs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid. In contrast, pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction which is biologically important to prevent sliding is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes H (1994) Rheology of emulsions—a review. Colloids Surf A 91:89–95

    Article  CAS  Google Scholar 

  • Barnes J, Smith J, Oines C, Mundl R (2002) Bionics and wet grip. Tire Technol Int 12/2002:56–60

    Google Scholar 

  • Barquins M, Roberts A (1986) Rubber-friction variation with rate and temperature—some new observations. J Phys D Appl Phys 19:547–563

    Article  CAS  Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods, (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Bhushan B (2003) Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. J Vac Sci Technol B 21:2262–2296. DOI 10.1116/1.1627336

    Google Scholar 

  • Bowden F, Tabor D (1950) The friction and lubrication of solids. Oxford University Press, Oxford

    Google Scholar 

  • Brochard-Wyart F, de Gennes PG (1994) Dewetting of a water film between a solid and a rubber. J Phys Condens Matter 6:A9–A12

    Article  CAS  Google Scholar 

  • Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth & Brooks/Cole., Pacific Grove

    Google Scholar 

  • Dewitz H (1884) Über die Fortbewegung der Thiere an senkrechten Flächen vermittels eines Secretes. Pflügers Arch Ges Physiol 33:440–481

    Article  Google Scholar 

  • Dixon A, Croghan P, Gowing R (1990) The mechanism by which aphids adhere to smooth surfaces. J Exp Biol 152:243–253

    Google Scholar 

  • Edwards J, Tarkanian M (1970) The adhesive pads of Heteroptera: a re-examination. Proc R Entom Soc Lond A 45:1–5

    Google Scholar 

  • Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthr Struct Dev 33:67–75

    Article  Google Scholar 

  • Federle W, Brainerd E, McMahon T, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98:6215–6220

    Article  PubMed  CAS  Google Scholar 

  • Federle W, Riehle M, Curtis A, Full R (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  Google Scholar 

  • Federle W, Baumgartner W, Hölldobler B (2004) Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J Exp Biol 207:67–74

    Article  PubMed  Google Scholar 

  • Francis B, Horn R (2001) Apparatus-specific analysis of fluid adhesion measurements. J Appl Phys 89:4167–4174. DOI 10.1063/1.1351057

    Google Scholar 

  • Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A 345:327–342

    Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Kluwer, Dordrecht

    Google Scholar 

  • Gorb S, Gorb E (2004) Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptera, Insecta). J Exp Biol 207:2917–2924

    Article  PubMed  Google Scholar 

  • Gorb S, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B 267:1239–1244

    Article  CAS  Google Scholar 

  • Gorb S, Jiao Y, Scherge M (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J Comp Physiol A 186:821–831

    Article  PubMed  CAS  Google Scholar 

  • Gorb S, Gorb E, Kastner V (2001) Scale effects on the attachment pads and friction forces in syrphid flies. J Exp Biol 204:1421–1431

    PubMed  CAS  Google Scholar 

  • Gorb S, Beutel R, Gorb E, Jiao Y, Kastner V, Niederegger S, Popov V, Scherge M, Schwarz U, Vötsch W (2002) Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr Comp Biol 42:1127–1139

    Article  Google Scholar 

  • Homola A, Israelachvili J, McGuiggan P, Gee M (1990) Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136:65–83

    Article  CAS  Google Scholar 

  • Ishii S (1987) Adhesion of a leaf-feeding ladybird Epilachna vigintioctomaculata (Coleoptera, Coccinellidae) on a vertically smooth surface. Appl Entom Zool 22:222–228

    Google Scholar 

  • Israelachvili J (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  • Jiao Y, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895

    PubMed  CAS  Google Scholar 

  • Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B 271:2209–15. DOI 10.1098/rspb.2004.2850

    Google Scholar 

  • Lees A, Hardie J (1988) The organs of adhesion in the aphid Megoura viciae. J Exp Biol 136:209–228

    Google Scholar 

  • Martin P, Brochard-Wyart F (1998) Dewetting at soft interfaces. Phys Rev Lett 80:3296–3299

    Article  CAS  Google Scholar 

  • Martin A, Buguin A, Brochard-Wyart F (2001) Dewetting nucleation centers at soft interfaces. Langmuir 17:6553–6559

    Article  CAS  Google Scholar 

  • Martin A, Buguin A, Brochard-Wyart F (2002) “Cerenkov” dewetting at soft interfaces. Europhys Lett 57:604–610

    Article  CAS  Google Scholar 

  • McFarlane JS, Tabor D (1950) Adhesion of solids and the effect of surface films. Proc R Soc Lond A 202:224–243

    Article  CAS  Google Scholar 

  • Niederegger S, Gorb S, Jiao Y (2002) Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J Comp Physiol A 187:961–970

    Article  Google Scholar 

  • Page EB (1963) Ordered hypotheses for multiple treatments: a significance test for linear ranks. J Am Stat Assoc 58:216–230

    Article  Google Scholar 

  • Persson B (2002) Adhesion between an elastic body and a randomly rough hard surface. Eur Phys J E 8:385–401. DOI 10.1140/epje/i2002-10025-1

    Google Scholar 

  • Persson B, Albohr O, Tartaglino U, Volokitin A, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17:R1–R62

    Article  CAS  Google Scholar 

  • Piau JM, Ravilly G, Verdier C (2005) Peeling of polydimethylsiloxane adhesives at low velocities: cohesive failure. J Polym Sci B Polym Phys 43:145–157

    Article  CAS  Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistic computing. R Foundation for Statistical Computing, Vienna, Austria

  • Roberts A (1971) The shear of thin liquid films. J Phys D Appl Phys 4:433–440

    Article  CAS  Google Scholar 

  • Stork N (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Stork N (1983) A comparison of the adhesive setae on the feet of lizards and arthropods. J Nat Hist 17:829–835

    Article  Google Scholar 

  • Tadros T (1994) Fundamental principles of emulsion rheology and their applications. Colloids Surf A 91:39–55

    Article  CAS  Google Scholar 

  • Vötsch W, Nicholson G, Müller R, Stierhof Y, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    Article  PubMed  Google Scholar 

  • Walker G (1993) Adhesion to smooth surfaces by insects—a review. Int J Adhesion Adhesives 13:3–7

    Article  Google Scholar 

  • Walker G, Yue A, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool Lond 205:297–307

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Andreas Eckart for helping in the development of motor control programs in LabVIEW. This study was financially supported by research grants of the Deutsche Forschungsgemeinschaft (SFB 567 “Mechanisms of interspecific interactions of organisms” and Emmy-Noether grant FE 547/1-3 to WF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Federle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drechsler, P., Federle, W. Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192, 1213–1222 (2006). https://doi.org/10.1007/s00359-006-0150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0150-5

Keywords

Navigation