Skip to main content
Log in

Magnetic orientation and magnetoreception in birds and other animals

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Animals use the geomagnetic field in many ways: the magnetic vector provides a compass; magnetic intensity and/or inclination play a role as a component of the navigational ‘map’, and magnetic conditions of certain regions act as ‘sign posts’ or triggers, eliciting specific responses. A magnetic compass is widespread among animals, magnetic navigation is indicated e.g. in birds, marine turtles and spiny lobsters and the use of magnetic ‘sign posts’ has been described for birds and marine turtles. For magnetoreception, two hypotheses are currently discussed, one proposing a chemical compass based on a radical pair mechanism, the other postulating processes involving magnetite particles. The available evidence suggests that birds use both mechanisms, with the radical pair mechanism in the right eye providing directional information and a magnetite-based mechanism in the upper beak providing information on position as component of the ‘map’. Behavioral data from other animals indicate a light-dependent compass probably based on a radical pair mechanism in amphibians and a possibly magnetite-based mechanism in mammals. Histological and electrophysiological data suggest a magnetite-based mechanism in the nasal cavities of salmonid fish. Little is known about the parts of the brain where the respective information is processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Baker RR (1989) Human navigation and magnetoreception. Manchester University Press, Manchester and New York

    Google Scholar 

  • Beason RC, Brennon WJ (1986) Natural and induced magnetization in the bobolink (Dolichonyx orycivorus). Ethology 91:75–80

    Google Scholar 

  • Beason RC, Nichols JE (1984) Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309:151–153

    Article  Google Scholar 

  • Beason RC, Semm P (1991) Two different magnetic systems in avian orientation. In: Bell BD, Cossee RO, Flux JEC, Heather BD, Hitchmough RA, Robertson CJR, Williams MJ (eds) Acta XX Congr Intern Ornithol, New Zealand Ornithological Congress Trust Board, Wellington, pp 1813–1819

    Google Scholar 

  • Beason RC, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    PubMed  Google Scholar 

  • Beason RC, Dussourd N, Deutschlander M (1995) Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–146

    PubMed  Google Scholar 

  • Beason RC, Wiltschko R, Wiltschko W (1997) Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114:405–415

    Google Scholar 

  • Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of Pied Flycatchers (Ficedula hypoleuca Pallas). In: Ouellet H (ed) Acta XIX Congr Int Ornithol Vol II. University of Ottawa Press, Ottawa, pp 1955–1962

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    CAS  PubMed  Google Scholar 

  • Boles LC, Lohmann KJ (2003) True navigation and magnetic map in spiny lobsters. Nature 421:60–63

    Article  CAS  PubMed  Google Scholar 

  • Cranfield J, Belford R, Debrunner P, Schulten K (1994) A perturbation treatment of oscillating magnetic fields in the radical pair mechanism. Chem Phys 182:1–18

    Article  Google Scholar 

  • Davila AF, Winklhofer M, Sheherbakov V, Petersen N Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys J in press

  • DeJong D (1982) Orientation of comb building by honeybees. J Comp Physiol 147:495–501

    Article  Google Scholar 

  • Deutschlander ME, Phillips JB, Borland SC (1999) The case for light-dependent magnetic orientation in animals. J Exp Biol 202:891–908

    PubMed  Google Scholar 

  • Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302

    Article  CAS  PubMed  Google Scholar 

  • Duelli P, Duelli-Klein R (1978) Die magnetische Nestausrichtung der australischen Kompaßtermite Amitermes meridionalis. Mitt Schweiz Entomol Ges 51:337–342

    Google Scholar 

  • Edmonds DT (1996) A sensitive optically detected magnetic compass for animals. Proc R Soc Lond B 263:295–298

    CAS  Google Scholar 

  • Fisher JH, Munro U, Phillips JB (2003) Magnetic navigation in an avian migrant? In: Berthold P, Gwinner E, Sonnenschein E (ed) Avian migration. Springer, Berlin Heidelberg New York, pp 423–432

    Google Scholar 

  • Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Article  CAS  PubMed  Google Scholar 

  • Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36

    Article  CAS  PubMed  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Struct Biol 6:489–490

    Article  Google Scholar 

  • Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028

    CAS  Google Scholar 

  • Gundmundsson GA, Sandberg R (2000) Sanderlings (Calidris alba) have a magnetic compass: orienation experiments during spring migration in Iceland. J Exp Biol 203:3137–3144

    PubMed  Google Scholar 

  • Güntürkün O (1997) Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 116:561–566

    PubMed  Google Scholar 

  • Hanzlik M, Heunemann C, Holzkamp-Rötzler E, Winklhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. BioMetals 13:325–331

    Article  CAS  PubMed  Google Scholar 

  • Haque R, Charausia SS, Wessel JH, Iuvone PM (2002) Dual regulation of cryptochrome I mRNA expression in chicken retina by light and circadian oscillators. Neuroreport 13:2247–2251

    Article  CAS  PubMed  Google Scholar 

  • Henbest KB, Kukura P, Rodgers CT, Hore PJ, Timmel CR (2004) Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J Am Chem Soc 126:8102–8103

    Article  CAS  PubMed  Google Scholar 

  • Jacklyn PM, Munro U (2002) Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera, Termitinae). Austr J Zool 50:357–368

    Article  Google Scholar 

  • Kalmijn AJ (1978) Electric and magnetic sensory world of sharks, skates, and rays. In: Hodgson FS, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office Naval Res, Arlington, VA, pp 507–528

    Google Scholar 

  • Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuation in the earth’s magnetic field influence pigeon orientation. J Comp Physiol 95:95–103

    Article  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenetic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL, Walker MM (1985) Particle-size considerations for magnetite-based magnetoreceptors. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, London, pp 243–256

    Google Scholar 

  • Kirschvink JL, Jones DS, MacFadden BJ (eds) (1985) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York

  • Light P, Salmon M, Lohmann KJ (1993) Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J Exp Biol 182:1–10

    Google Scholar 

  • Lohmann KJ (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol 155:37–49

    CAS  PubMed  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1992) Orientation to oceanic waves by green turtle hatchlings. J Exp Biol 171:1–13

    Google Scholar 

  • Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the leatherback sea turtle. Biol Bull 185:149–151

    Google Scholar 

  • Lohmann KJ, Lohmann CMF (1994) Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitudes. J Exp Biol 194:23–32

    PubMed  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1996) Detection of magnetic field intensity by sea turtles. Nature 380:59–61

    Article  CAS  Google Scholar 

  • Lohmann KJ, Pentcheff ND, Nevitt GA, Stetten GD, Zimmer-Faust RK, Jarrard HE, Boles LC (1995) Magnetic orientation of spiny lobsters in the ocean: experiments with underseas coil systems. J Exp Biol 198:2041–2048

    PubMed  Google Scholar 

  • Lohmann KJ, Cain SD, Dodge SA, Lohmann CMF (2001) Regional magnetic fields as navigational markers for sea turtles. Science 294:364–366

    Article  CAS  PubMed  Google Scholar 

  • Lohmann KJ, Lohmann CMF, Erhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909–910

    Article  CAS  PubMed  Google Scholar 

  • Mai JK, Semm P (1990) Patterns of glucose utilization following magnetic stimulation. J Hirnforsch 31:331–336

    CAS  PubMed  Google Scholar 

  • Maier EJ (1992) Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea. J Comp Physiol A 170:709–714

    Article  Google Scholar 

  • Mann S, Sparks NHC, Walker MM, Kirschvink JL (1988) Ultrastructure, morphology and organization of biogenic magnetite from Sockeyes salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 140:35–49

    CAS  PubMed  Google Scholar 

  • Marhold S, Burda H, Wiltschko W (1997a) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423

    Article  CAS  Google Scholar 

  • Marhold S, Burda H, Kreilos I, Wiltschko W (1997b) Magnetic orientation in the common mole-rat from Zambia. In: Orientation and navigation—birds, humans and other animals. Royal Instit of Navig, Oxford, 5-1–5-9

  • Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102

    Article  CAS  PubMed  Google Scholar 

  • Möller A, Gesson M, Noll C, Phillips J, Wiltschko R, Wiltschko W (2001) Light-dependent magnetoreception in migratory birds previous exposure to red light alters the response to red light. In: Orientation and navigation—birds, humans and other animals. Royal Institute of Navigation, Oxford, 6-1–6-6

  • Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588

    Article  PubMed  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Nat Acad Sci USA 101:14294–14299

    Article  CAS  PubMed  Google Scholar 

  • Muheim R, Bäckman J, Åkesson S (2002) Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J Exp Biol 205:3845–3856

    PubMed  Google Scholar 

  • Munro U, Munro JA, Phillips JB, Wiltschko R, Wiltschko W (1997) Evidence for a magnetite-based navigational ‘map’ in birds. Naturwissenschaften 84:26–28

    Article  CAS  Google Scholar 

  • Murray RW (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J Exp Biol 39:119–128

    CAS  PubMed  Google Scholar 

  • Němec P, Altmann J, Marhold S, Burds H, Oelschläger HHA (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294:366–368

    Article  PubMed  Google Scholar 

  • Pardi L, Ugolini A, Faqi AS, Scapini F, Ercolini A (1988) Zonal recovering in equatorial sandhoppers: Interaction between magnetic and solar orientation. In: Chelazzi G, Vannini M (eds) Behavioral adaptation to intertidal life. Proc of the NATO Sci, Plenum, New York, London, pp 79–92

    Google Scholar 

  • Phillips JB (1986) Two magnetoreception pathways in a migratory salamander. Science 233:765–767

    CAS  PubMed  Google Scholar 

  • Phillips JB, Borland SC (1992a) Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt Notophthalmus viridescens. Anim Behav 44:796–797

    Google Scholar 

  • Phillips JB, Borland SC (1992b) Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144

    Article  Google Scholar 

  • Phillips JB, Borland SC (1994) Use of a specialized magnetoreception system for homing by the eastern red-spotted newt Notophthalmus viridescens. J Exp Biol 188:275–291

    PubMed  Google Scholar 

  • Phillips JB, Deutschlander ME (1997) Magnetoreception in terrestrial vertebrates: implications for possible mechanisms of EMF interaction with biological systems. In: Stevens RG, Wilson BW, Andrews LE (eds) The melatonin hypothesis: electric power and the risk of breast cancer. Battelle Press, Columbus Ohio, pp 111–172

    Google Scholar 

  • Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552

    CAS  PubMed  Google Scholar 

  • Phillips JB, Freake MJ, Borland SC (2002a) Behavioral titration of magnetic map coordinates. J Comp Physiol A 188:157–160

    Article  Google Scholar 

  • Phillips JB, Borland SC, Freake M, Brassart J, Kirschvink JL (2002b) ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol 205:3903–3914

    Google Scholar 

  • Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310

    Article  PubMed  Google Scholar 

  • Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137:243–248

    Article  Google Scholar 

  • Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol 147:547–552

    Article  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for vision-based magnetoreception in birds. Biophys J 78:707–718

    CAS  PubMed  Google Scholar 

  • Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180

    Article  CAS  PubMed  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photorceptors. Chem Rev 103:2203–2237

    Article  CAS  PubMed  Google Scholar 

  • Schulten K, Windemuth A (1986) Model for a physiological magnetic compass. In: Maret G, Boccara N, Kiepenheuer J (eds). Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 99–106

    Google Scholar 

  • Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system of the Bobolink. Brain Res Bull 25:735–740

    Article  CAS  PubMed  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625

    Article  CAS  PubMed  Google Scholar 

  • Semm P, Nohr D, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeons’s brain. J Comp Physiol 155:283–288

    Article  Google Scholar 

  • Shcherbakov VP, Winklhofer M (1999) The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 28:380–392

    Article  CAS  Google Scholar 

  • Skiles DD (1985) The geomagnetic field: its nature, history and biological relevance. In: Kirschvink JL, Jones DS MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, London, pp 43–102

    Google Scholar 

  • Stapput K, Gesson M, Wiltschko R, Wiltschko W (2005) Light-dependent magnetoreception: behavior of migratory birds under monochromatic and bichromatic lights. In: Orientation and Navigation. Proc RIN 05 Conf, Royal Institute of Navigation, Reading (in press)

  • Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W (2005) Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92:86–90

    Article  CAS  PubMed  Google Scholar 

  • Viguier C (1882) Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Revue Philosophique de la France et de l’Étranger 14:1–36

    Google Scholar 

  • Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 143–151

    Google Scholar 

  • Walcott C, Green RP (1974) Orientation of homing pigeons alterd by a change in the direction of an applied magnet field. Science 184:180–182

    CAS  PubMed  Google Scholar 

  • Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    Article  CAS  Google Scholar 

  • Williams MN, Wild JM (2001) Trigeminally innervated iron-containing structures in the beak of homing pigeons and other birds. Brain Res 889:243–246

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W (1978) Further analysis of the magnetic compass of migratory birds. In: Schmidt-König K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 302–310

    Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European Robins. Science 176:62–64

    Google Scholar 

  • Wiltschko R, Wiltschko W (1978) Evidence for the use of magnetic outward-journey information in homing pigeons. Naturwissenschaften 65:112

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291:433–434

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1992) Migratory orientation: magnetic compass orientation of Garden Warblers (Sylvia borin) after a simulated crossing of the magnetic equator. Ethology 91:70–79

    Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic Orientation in Animals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wiltschko W, Wiltschko R (1999) The effect of yellow and blue light on magnetic compass orientation in European Robins, Erithacus rubecula. J Comp Physiol A 184:295–299

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2001) Light-dependent magnetoreception in birds: the behavior of European Robins, Erithacus rubecula, under monochromatic light of various wavelengths. J Exp Biol 204:3295–3302

    CAS  PubMed  Google Scholar 

  • Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89:445–452

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65:257–272

    Article  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (1993) Red light disrupts magnetic orientation of migratory birds. Nature 364:525–527

    Article  Google Scholar 

  • Wiltschko W, Munro U, Beason RC, Ford H, Wiltschko R (1994) A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50:697–700

    Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (1998) Effect of a magnetic pulse on the orientation of Silvereyes, Zosterops l. lateralis, during spring migration. J Exp Biol 201:3257–3261

    PubMed  Google Scholar 

  • Wiltschko W, Wiltschko R, Munro U (2000) Light-dependent magnetoreception in birds: the effect of intensity of 565-nm green light. Naturwissenschaften 87:366–369

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W, Gesson M, Wiltschko R (2001) Magnetic compass orientatiom of European robins under 565 nm green light. Naturwissenschaften 88:387–390

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002a) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    Article  CAS  Google Scholar 

  • Wiltschko W, Munro U, Wiltschko W, Kirschvink JL (2002b) Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J Exp Biol 205:3031–3037

    CAS  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2003a) Lateralisation of magnetic compass orientation in silvereyes, Zosterops lateralis. Austr J Zool 51:1–6

    Article  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2003b) Magnetic orientation in birds: non-compass responses under monochromatic light of increased intensity. Proc R Soc Lond B 270:2133–2140

    Article  Google Scholar 

  • Wiltschko W, Möller A, Gesson M, Noll C, Wiltschko R (2004a) Light-dependent magnetoreception in birds analysis of the behaviour under red light after pre-exposure to red light. J Exp Biol 207:1193–1202

    Article  Google Scholar 

  • Wiltschko W, Gesson M, Stapput K, Wiltschko R (2004b) Light-dependent magnetoreception in birds: interaction of at least two different receptors. Naturwissenschaften 91:130–134

    Article  CAS  Google Scholar 

  • Yorke ED (1979) A possible magnetic transducer in birds. J Theor Biol 77:101–105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wiltschko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiltschko, W., Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191, 675–693 (2005). https://doi.org/10.1007/s00359-005-0627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0627-7

Keywords

Navigation