Skip to main content

Simultaneous and successive colour discrimination in the honeybee (Apis mellifera)

Abstract

The colour discrimination of individual free-flying honeybees (Apis mellifera) was tested with simultaneous and successive viewing conditions for a variety of broadband reflectance stimuli. For simultaneous viewing bees used form vision to discriminate patterned target stimuli from homogeneous coloured distractor stimuli, and for successive discrimination bees were required to discriminate between homogeneously coloured stimuli. Bees were significantly better at a simultaneous discrimination task, and we suggest this is explained by the inefficiency with which the bees’ brain can code and retrieve colour information from memory when viewing stimuli successively. Using simultaneous viewing conditions bees discriminated between the test stimuli at a level equivalent to 1 just-noticeable-difference for human colour vision. Discrimination of colours by bees with simultaneous viewing conditions exceeded previous estimates of what is possible considering models of photoreceptor noise measured in bees, which suggests spatial and/or temporal summation of colour signals for fine discrimination tasks. The results show that when behavioural experiments are used to collect data about the mechanisms facilitating colour discrimination in animals, it is important to consider the effects of the stimulus viewing conditions on results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

s.e.:

Standard error

HSB:

Hue-saturation-brightness

RN:

Receptor noise

Jnd:

Just-noticeable-difference

References

  • Arnold K, Neumeyer C (1987) Wavelength discrimination in the turtle Pseudemys scripta elegans. Vision Res 27:1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Backhaus W (1991) Colour opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397

    Article  CAS  PubMed  Google Scholar 

  • Backhaus W, Menzel R (1987) Colour distance derived from a receptor model of colour vision in the honeybee. Biol Cybern 55:321–331

    Article  Google Scholar 

  • Backhaus W, Menzel R, Kreissl (1987) Multidimensional scaling of colour similarity in bees. Biol Cybern 56:293–304

    Article  Google Scholar 

  • Brandt R, Vorobyev M (1997) Metric analysis of threshold spectral sensitivity in the honeybee. Vision Res 37:425–439

    Article  CAS  PubMed  Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Chittka L, Gumbert A, Kunze J (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behav Ecol 8: 239–249

    Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    Article  CAS  PubMed  Google Scholar 

  • Donner K (1992) Noise and the absolute thresholds of cone and rod vision. Vision Res 32:853–866

    Article  CAS  PubMed  Google Scholar 

  • Dyer AG (2001) Ocular filtering of ultraviolet radiation and the spectral spacing of photoreceptors benefit von Kries colour constancy. J Exp Biol 204:2391–2399

    CAS  PubMed  Google Scholar 

  • Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114

    Article  CAS  Google Scholar 

  • Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227

    Article  CAS  PubMed  Google Scholar 

  • Dyer AG, Chittka L (2004c) Bumblebee (Bombus terrestris) sacrifice foraging speed to solve difficult discrimination tasks. J Comp Physiol A 190:759–763

    Google Scholar 

  • Emmerton J, Delius JD (1980) Wavelength discrimination in the ’visible’ and ultraviolet spectrum by pigeons. J Comp Physiol 141:47–52

    Article  Google Scholar 

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M, Vorobyev M (1998) The angular range of achromatic target detection by honeybees. J Comp Physiol A 183:101–110

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of colored stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of colored stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–244

    Article  Google Scholar 

  • Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan M (2001) The concept of ’sameness’ and ’difference’ in an insect. Nature 410:930–933

    Article  CAS  PubMed  Google Scholar 

  • Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  • Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Article  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 187:215–224

    Article  CAS  PubMed  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2002) Discrimination of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 188:503–512

    Article  CAS  Google Scholar 

  • Hurvich LM (1981) Color vision. Sinauer, Sunderland

    Google Scholar 

  • Jacobs GH (1981) Comparative color vision. Academic, New York

    Google Scholar 

  • Jacobs GH, Neitz J (1985) Color vision in squirrel monkeys: sex-related differences suggest the mode of inheritance. Vision Res 25:141–143

    Article  CAS  PubMed  Google Scholar 

  • Kaissling K, Priesner E (1970) Die riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Komatsu H, Ideura Y (1993) Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 70:677–694

    CAS  PubMed  Google Scholar 

  • Kulikowski JJ, Walsh V (1991) On the limits of colour detection and discrimination. In: Kulikowski JJ, Walsh V, Murray IJ, Cronly-Dillon JR (eds) Vision and visual dysfunction 5: Limits of vision. Macmillian, London, pp 202–220

    Google Scholar 

  • Land MF (1997) The resolution of insect compound eyes. Israel J Plant Sci 45:79–91

    Google Scholar 

  • Lehrer M (1998) Looking all around: honeybees’ use of different cues in different eye regions. J Exp Biol 201:3275–3292

    PubMed  Google Scholar 

  • Lehrer M (1999) Dorsoventral asymmetry of colour discrimination in bees. J Comp Physiol A 184:195–206

    Article  Google Scholar 

  • Lehrer M, Horridge GA, Zhang SW, Gadagkar R (1995) Shape vision in bees: innate preference for flower-like patterns. Phil Trand Roy Soc B 347:123–137

    Google Scholar 

  • MacAdam DL (1942) Visual sensitivities to colour differences in daylight. J Opt Soc Am 32:247–274

    Google Scholar 

  • MacAdam DL (1985) Color measurement theme and variations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction, Vol 6 The perception of colour. Macmillan, London, UK, pp 262–293

  • Menzel R, Lieke E (1983) Antagonistic color effects in spatial vision of honeybees. J Comp Physiol 151:441–448

    Article  Google Scholar 

  • Neumeyer C (1980) Simultaneous color contrast in the honeybee. J Comp Physiol A 139:165–176

    Article  Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in the honey bee: successive color contrast and color constancy. J Comp Physiol A 144:543–553

    Article  Google Scholar 

  • Neumeyer C (1986) Wavelength discrimination in the goldfish. J Comp Physiol 158:203–213

    Article  Google Scholar 

  • Neumeyer C (1991) Evolution of colour vision. In: Cronly-Dillon JR, Gregory RL, Cronly-Dillon JR (eds) Vision and visual dysfunction 2: Evolution of the eye and visual system. Macmillian, London, pp 284–305

    Google Scholar 

  • Newhall SM, Burnham RW, Clark JR (1957) Comparison of successive and simultaneous color matching. J Opt Soc Am 47:43–56

    Google Scholar 

  • Niggebrugge C, Hempel de Ibarra N (2003) Colour-dependant target detection by bees. J Comp Physiol A 189:915–918

    Article  CAS  Google Scholar 

  • Parkhurst D, Law K, Niebur E (2002) Modeling the role of salience in the allocation of overt visual attention. Vision Res 42:107–123

    Article  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  CAS  PubMed  Google Scholar 

  • Romero J, Hita E, Barco LJD (1986) A comparative study of successive and simultaneous methods in colour discrimination. Vision Res 26:471–476

    Article  CAS  PubMed  Google Scholar 

  • Schnapf JL, Nunn BJ, Meister M, Baylor DA (1990) Visual transduction in cones of the monkey Macaca fascicularis. J Physiol 427:681–713

    CAS  PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behaviour. Proc Natl Acad Sci USA 98:3898–3903

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its chromatic properties. J Comp Physiol A 162:159–172

    Article  Google Scholar 

  • Uchikawa K (1983) Purity discrimination: successive vs simultaneous comparison method. Vision Res 23:53–58

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa K, Ikeda M (1981) Temporal deterioration of wavelength discrimination with successive comparison method. Vision Res 21:591–595

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev M, Brandt R (1997) How do insects discriminate colours? Israel J Plant Sci 45:103–113

    Google Scholar 

  • Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vision Res 41:639–653

    Article  CAS  PubMed  Google Scholar 

  • Wyszecki G, Styles WS (1982) Color science: concepts and methods, quantitative data and formula. Wiley, New York

    Google Scholar 

  • Zhang SW, Srinivasan M (1994) Prior experience enhances pattern discrimination in insect vision. Nature 368:330–333

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professors K. Donner, M. Giurfa, W.R.A. Muntz and T. Reuter for discussions about the study. We thank Dr J. Schramme, Mr M. Manns and Ms C. Schröder for assistance in conducting experiments. A.G. Dyer is grateful to the Alexander von Humboldt Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian G Dyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dyer, A.G., Neumeyer, C. Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191, 547–557 (2005). https://doi.org/10.1007/s00359-005-0622-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0622-z

Keywords

  • Colour vision
  • Receptor noise
  • Colour space
  • Just-noticeable-difference
  • Photoreceptors