Dim nocturnal illumination alters coupling of circadian pacemakers in Siberian hamsters, Phodopus sungorus

Abstract

The circadian pacemaker of mammals comprises multiple oscillators that may adopt different phase relationships to determine properties of the coupled system. The effect of nocturnal illumination comparable to dim moonlight was assessed in male Siberian hamsters exposed to two re-entrainment paradigms believed to require changes in the phase relationship of underlying component oscillators. In experiment 1, hamsters were exposed to a 24-h light-dark-light-dark cycle previously shown to split circadian rhythms into two components such that activity is divided between the two daily dark periods. Hamsters exposed to dim illumination (<0.020 lx) during each scotophase were more likely to exhibit split rhythms compared to hamsters exposed to completely dark scotophases. In experiment 2, hamsters were transferred to winter photoperiods (10 h light, 14 h dark) from two different longer daylengths (14 h or 18 h light daily) in the presence or absence of dim nighttime lighting. Dim nocturnal illumination markedly accelerated adoption of the winter phenotype as reflected in the expansion of activity duration, gonadal regression and weight loss. The two experiments demonstrate substantial efficacy of light intensities generally viewed as below the threshold of circadian systems. Light may act on oscillator coupling through rod-dependent mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.

Abbreviations

α:

activity duration

DD:

constant dark or dim

E:

evening oscillator

ETV:

estimated testis volume

LDLD:

light-dark-light-dark cycle

LED:

light emitting diode

M:

morning oscillator

SCN:

suprachiasmatic nuclei

τ:

free-running period

References

  1. Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11-28

    CAS  Google Scholar 

  2. Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314-320

    Article  CAS  PubMed  Google Scholar 

  3. Daan S, Aschoff J (1975) Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia 18:269-316

    Google Scholar 

  4. Daan S, Berde C (1978) Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. J Theor Biol 70:297-313

    Google Scholar 

  5. Elliott JA, Tamarkin L (1994) Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters. J Comp Physiol A 174:469-484

    CAS  PubMed  Google Scholar 

  6. Erkert HG (1976) Light-induced activity optimum in night monkeys (Aotus trivirgatus). Folia Primatol 25:186-192

    CAS  PubMed  Google Scholar 

  7. Erkert HG, Grober J (1986) Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol 47:171-188

    CAS  PubMed  Google Scholar 

  8. Erkert HG, Bay FA, Kracht S (1976) Zeitgeber induced modulation of activity patterns in nocturnal mammals (Chiroptera). Experientia 32:560-562

    CAS  PubMed  Google Scholar 

  9. Evans JA, Gorman MR (2002) Split circadian rhythms of female Syrian hamsters and their offspring. Physiol Behav 76:469-478

    Article  CAS  PubMed  Google Scholar 

  10. Ferraro JS (1990) Nocturnal illumination maintains reproductive function and simulates the period-lengthening effect of constant light in the mature male Djungarian hamster (Phodopus sungorus). J Interdiscipl Cycle Res 21:1-16

    CAS  PubMed  Google Scholar 

  11. Ferraro JS, McCormack CE (1984) Nature of the light stimulus producing Aschoff’s intensity effect and anovulation. Am J Physiol 247:R296-R301

    CAS  PubMed  Google Scholar 

  12. Freedman MS, Lucas RJ, Soni B, Schantz M von, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502-504

    CAS  PubMed  Google Scholar 

  13. Freeman DA, Goldman BD (1997) Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters. J Biol Rhythms 12:100-109

    CAS  PubMed  Google Scholar 

  14. Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 16:283-301

    CAS  PubMed  Google Scholar 

  15. Goldman SL, Goldman BD (2003) Early photoperiod history and short-day responsiveness in Siberian hamsters. J Exp Zool A 296:38-45

    Article  Google Scholar 

  16. Gorman MR (2001) Exotic photoperiods induce and entrain split circadian activity rhythms in hamsters. J Comp Physiol A 187:793-800

    Article  CAS  PubMed  Google Scholar 

  17. Gorman MR, Elliott JA (2003) Entrainment of two subjective nights by light:dark:light:dark cycles in three rodent species. J Biol Rhythms 18:502-512

    PubMed  Google Scholar 

  18. Gorman MR, Lee TM (2001) Daily novel wheel running reorganizes and splits hamster circadian activity rhythms. J Biol Rhythms 16:541-551

    CAS  PubMed  Google Scholar 

  19. Gorman MR, Zucker I (1997) Environmental induction of photononresponsiveness in the Siberian hamster, Phodopus sungorus. Am J Physiol 272:R887-R895

    CAS  PubMed  Google Scholar 

  20. Gorman MR, Freeman DA, Zucker I (1997) Photoperiodism in hamsters: abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators. J Biol Rhythms 12:122-135

    CAS  PubMed  Google Scholar 

  21. Gorman MR, Elliott JA, Evans JA (2003) Plasticity of hamster circadian entrainment patterns depends on light intensity. Chronobiol Int 20:233-248

    Article  PubMed  Google Scholar 

  22. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065-1070

    CAS  PubMed  Google Scholar 

  23. Hoffmann K, Illnerova H, Vanecek J (1986) Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic response in the Djungarian hamster (Phodopus sungorus). Neurosci Lett 67:68-72

    Article  CAS  PubMed  Google Scholar 

  24. Illnerova H (1991) The suprachiasmatic nucleus and rhythmic pineal melatonin production. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 197-216

  25. Illnerova H, Hoffmann K, Vanecek J (1986) Adjustment of the rat pineal N-acetyltransferase rhythm to change from long to short photoperiod depends on the direction of the extension of the dark period. Brain Res 362:403-408

    Article  CAS  PubMed  Google Scholar 

  26. Kavanau JL (1967) Behaviour of captive white-footed mice. Science 155:1623-1639

    CAS  PubMed  Google Scholar 

  27. Kliman RM, Lynch GR (1992) Evidence for genetic variation in the occurrence of the photoresponse of the Djungarian hamster, Phodopus sungorus. J Biol Rhythms 7:161-175

    CAS  PubMed  Google Scholar 

  28. Kunz H, Achermann P (2003) Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. J Theor Biol 224:63-78

    Article  PubMed  Google Scholar 

  29. Meijer JH, Daan S, Overkamp GJ, Hermann PM (1990) The two-oscillator circadian system of tree shrews (Tupaia belangeri) and its response to light and dark pulses. J Biol Rhythms 5:1-16

    CAS  PubMed  Google Scholar 

  30. Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16:415-429

    CAS  PubMed  Google Scholar 

  31. Mrosovsky N, Janik DS (1993) Behavioral decoupling of circadian rhythms. J Biol Rhythms 8:57-65

    CAS  PubMed  Google Scholar 

  32. Oda GA, Menaker M, Friesen WO (2000) Modeling the dual pacemaker system of the tau mutant hamster. J Biol Rhythms 15:246-264

    CAS  PubMed  Google Scholar 

  33. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213-2216

    Article  CAS  PubMed  Google Scholar 

  34. Pittendrigh CS (1974) Circadian oscillations in cells and the circadian organization of multicellular systems. In: Schmitt FO, Worden FG (eds) The neurosciences. Third study program. MIT Press, Cambridge, pp 437-458

  35. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106:333-355

    Google Scholar 

  36. Pittendrigh CS, Elliott JA, Takamura T (1984) The circadian component in photoperiodic induction. CIBA Foundation Symposium 104:26-47

    Google Scholar 

  37. Prendergast BJ, Freeman DA (1999) Pineal-independent regulation of photo-nonresponsiveness in the Siberian hamster (Phodopus sungorus). J Biol Rhythms 14:62-71

    CAS  PubMed  Google Scholar 

  38. Puchalski W, Lynch GR (1986) Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. J Comp Physiol A 159:7-11

    CAS  PubMed  Google Scholar 

  39. Puchalski W, Lynch GR (1988) Characterization of circadian function in Djungarian hamsters insensitive to short-day photoperiod. J Comp Physiol A 162:309-316

    CAS  PubMed  Google Scholar 

  40. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211-2213

    Article  CAS  PubMed  Google Scholar 

  41. Sumova A, Travnickova Z, Illnerova H (1995) Memory on long but not on short days is stored in the rat suprachiasmatic nucleus. Neurosci Lett 200:191-194

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Antonio Mora and Tony Mora for excellent animal care, and to Magdalena Kendall and Mona Fallah-Tafti for assistance with analysis. This research was supported by NIH grants HD-36460 and NS-30235 and NSF grant IBN-0346391 and was conducted in compliance with all rules and regulations of the Animal Care and Use Committee, University of California, San Diego and the USDA, and followed recommendations in Guide for the Care and Use of Laboratory Animals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. R. Gorman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorman, M.R., Elliott, J.A. Dim nocturnal illumination alters coupling of circadian pacemakers in Siberian hamsters, Phodopus sungorus . J Comp Physiol A 190, 631–639 (2004). https://doi.org/10.1007/s00359-004-0522-7

Download citation

Keywords

  • Oscillator photoperiod coupling
  • Splitting entrainment