Skip to main content
Log in

Discrimination of conspecific sex and reproductive condition using chemical cues in axolotls (Ambystoma mexicanum)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Chemosensory cues play an important role in the daily lives of salamanders, mediating foraging, conspecific recognition, and territorial advertising. We investigated the behavioral effects of conspecific whole-body odorants in axolotls, Ambystoma mexicanum, a salamander species that is fully aquatic. We found that males increased general activity when exposed to female odorants, but that activity levels in females were not affected by conspecific odorants. Although males showed no difference in courtship displays across testing conditions, females performed courtship displays only in response to male odorants. We also found that electro-olfactogram responses from the olfactory and vomeronasal epithelia were larger in response to whole-body odorants from the opposite sex than from the same sex. In males, odorants from gravid and recently spawned females evoked different electro-olfactogram responses at some locations in the olfactory and vomeronasal epithelia; in general, however, few consistent differences between the olfactory and vomeronasal epithelia were observed. Finally, post hoc analyses indicate that experience with opposite-sex conspecifics affects some behavioral and electrophysiological responses. Overall, our data indicate that chemical cues from conspecifics affect general activity and courtship behavior in axolotls, and that both the olfactory and vomeronasal systems may be involved in discriminating the sex and reproductive condition of conspecifics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EOG:

electro-olfactogram

VNO:

vomeronasal organ

References

  • Armstrong JB, Duhon ST, Malacinski GM (1989) Raising the axolotl in captivity. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 220–227

  • Arnold SJ (1976) Sexual behavior, sexual interference and sexual defense in the salamanders Ambystoma maculatum, Ambystoma tigrinum and Plethodon jordani. Z Tierpsychol 42:247–300

    Google Scholar 

  • Bhatt JP, Sajwan MS (2001) Ovarian steroid sulphate functions as priming pheromone in male Barilius bendelisis (Ham.) J Biosci 26:253–263

    Google Scholar 

  • Bjerselius R, Olsen K, Zheng W (1995) Behavioural and endocrinological responses of mature male goldfish to the sex pheromone 17α,20β-dihydroxy-4-pregnen-3-one in the water. J Exp Biol 198:747–754

    CAS  PubMed  Google Scholar 

  • Brandon RA (1989) Natural history of the axolotl and its relationship to other ambystomatid salamanders. In: Armstrong JB, Malacinski GM (eds) Developmental biology of the axolotl. Oxford University Press, New York, pp 13–21

  • Burghardt GM (1970) Chemical perception in reptiles. In: Johnston JW Jr, Moulton DG, Turk A (eds) Communication by chemical signals. Appleton-Century-Crofts, New York, pp 241–308

  • Cedrini L, Fasolo A (1971) Olfactory attractants in sex recognition of the crested newt: An electrophysiological research. Monit Zool Ital 5:223–229

    Google Scholar 

  • Chivers DP, Kiesecker JM, Anderson MT, Wildy EL, Blaustein AR (1996) Avoidance response of a terrestrial salamander (Ambystoma macrodactylum) to chemical alarm cues. J Chem Ecol 22:1709–1716

    CAS  Google Scholar 

  • Cobbetti A, Zerani M (1992) PGF, PGE2, and sex steroids from the abdominal gland of the male crested newt Triturus carnifex (Laur.). Prostaglandins 43:101–109

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Tannoudji J, Lavenet C, Locatelli A, Tillet Y, Signoret JP (1989) Non-involvement of the accessory olfactory system in the LH response of anoestrous ewes to male odor. J Reprod Fertil 86:135–144

    CAS  PubMed  Google Scholar 

  • Dawley EM (1984) Recognition of individual, sex and species odorants by salamanders of the Plethodon glutinosus-P. jordani complex. Anim Behav 32:353–361

    Google Scholar 

  • Dorries KM, Adkins-Regan E, Halpern BP (1997) Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav Evol 49:53–62

    CAS  PubMed  Google Scholar 

  • Døving KB, Selset R, Thommesen G (1980) Olfactory sensitivity to bile acids in salmonid fishes. Acta Physiol Scand 108:123–131

    PubMed  Google Scholar 

  • Eisthen HL (1992) Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech 23:1–21

    CAS  PubMed  Google Scholar 

  • Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233

    CAS  PubMed  Google Scholar 

  • Eisthen HL, Park D (2004) Chemical signals and vomeronasal system function in axolotls (Ambystoma mexicanum). In: Mason R, LeMaster M, Müller-Schwarze D (eds) Chemical signals in vertebrates 10. Kluwer Academic/Plenum Press, New York (in press)

  • Eisthen HL, Sengelaub DR, Schroeder DM, Alberts JR (1994) Anatomy and forebrain projections of the olfactory and vomeronasal organs in axolotls (Ambystoma mexicanum). Brain Behav Evol 44:108–124

    CAS  PubMed  Google Scholar 

  • Halpern M, Frumin N (1979) Roles of the vomeronasal and olfactory systems in prey attack and feeding in adult garter snakes. Physiol Behav 22:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Kubie JL (1984) The role of the ophidian vomeronasal system in species-typical behavior. Trends Neurosci 7:472–477

    Google Scholar 

  • Halpern M, Martínez-Marcos A (2003) Structure and function of the vomeronasal system: an update. Prog Neurobiol 70:245–318

    Article  CAS  PubMed  Google Scholar 

  • Hoshita T (1985) Bile alcohols and primitive bile acids. In: Danielsson H, Sjövall J (eds) Sterols and bile acids. Elsevier, Amsterdam, pp 279–302

  • Houck LD, Reagan NL (1990) Male courtship pheromones increase female receptivity in a plethodontid salamander. Anim Behav 39:729–734

    Google Scholar 

  • Jaeger RG (1981) Dear enemy recognition and the costs of aggression between salamanders. Am Nat 117:962–974

    Article  Google Scholar 

  • Kauer JS (2002) On the scents of smell in the salamander. Nature 417:336–342

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama S, Toyoda F, Ohmiya Y, Matsuda K, Tanaka S, Hayashi H (1995) Sodefrin: a female-attracting peptide pheromone in newt cloacal glands. Science 267:1643–1645

    CAS  PubMed  Google Scholar 

  • Kikuyama S, Toyoda F, Yamamoto K, Tanaka S, Hayashi H (1997) Female-attracting pheromone in newt cloacal glands. Brain Res Bull 44:415–422

    Article  CAS  PubMed  Google Scholar 

  • Li W, Sorensen PW, Gallaher DD (1995) The olfactory system of migratory adult sea lamprey (Petromyzon marinus) is specifically and acutely sensitive to unique bile acids released by conspecific larvae. J Gen Physiol 105:569–587

    CAS  PubMed  Google Scholar 

  • Li W, Scott AP, Siefkes MJ, Yan H, Liu Q, Yun SS, Gage DA (2002) Bile acid secreted by male sea lamprey that acts as a sex pheromone. Science 296:138–141

    Article  CAS  PubMed  Google Scholar 

  • Mackay-Sim A, Patel U (1984) Regional differences in cell density and cell genesis in the olfactory epithelium of the salamander, Ambystoma tigrinum. Exp Brain Res 57:99–106

    CAS  PubMed  Google Scholar 

  • Mackay-Sim A, Shaman P (1984) Topographic coding of odorant quality is maintained at different concentrations in the salamander olfactory epithelium. Brain Res 297:207–216

    Article  CAS  PubMed  Google Scholar 

  • Mackay-Sim A, Shaman P, Moulton DG (1982) Topographic coding of olfactory quality: odorant-specific patterns of epithelial responsivity in the salamander. J Neurophysiol 48:584–596

    CAS  PubMed  Google Scholar 

  • Malacarne G, Giacoma C (1986) Chemical signals in European newt courtship. Boll Zool 53:79–83

    Google Scholar 

  • Malacarne G, Bottoni L, Massa R, Vellano C (1984) The abdominal gland of the crested newt: a possible source of courtship pheromones. Preliminary ethological and biochemical data. Monit Zool Ital 18:33–39

    CAS  Google Scholar 

  • Marco A, Chivers DP, Kiesecker JM, Blaustein AR (1998) Mate choice by chemical cues in Western redback (Plethodon vehiculum) and Dunn’s (P. dunni) salamanders. Ethology 104:781–788

    Google Scholar 

  • Mason RT, Fales HM, Jones TH, Pannell LK, Chinn JW, Crews D (1989) Sex pheromones in snakes. Science 245:290–293

    CAS  PubMed  Google Scholar 

  • Meredith M (1998) Vomeronasal, olfactory, hormonal convergence in the brain: Cooperation or coincidence? Ann N Y Acad Sci 855:349–361

    CAS  PubMed  Google Scholar 

  • Michel WC, Lubomudrov LM (1995) Specificity and sensitivity of the olfactory organ of the zebrafish, Danio rerio. J Comp Physiol A 177:191–199

    CAS  PubMed  Google Scholar 

  • Murphy CA, Stacey NE, Corkum LD (2001) Putative steroidal pheromones in the round goby, Neogobius melanostomus: Olfactory and behavioral responses. J Chem Ecol 27:443–470

    Article  CAS  PubMed  Google Scholar 

  • Nevitt GA, Dittman AH, Quinn TP, Moody WJ Jr (1994) Evidence for a peripheral olfactory memory in imprinted salmon. Proc Natl Acad Sci USA 91:4288–4292

    CAS  PubMed  Google Scholar 

  • Ottoson D (1956) Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand 35 [Suppl 122]:1–83

    Google Scholar 

  • Ovaska K (1988) Recognition of conspecific odorants by the Western red-backed salamander, Plethodon vehiculum. Can J Zool 66:1293–1296

    Google Scholar 

  • Park D, Eisthen HL (2003) Gonadotropin releasing hormone (GnRH) modulates odorant responses in the peripheral olfactory system of axolotls. J Neurophysiol 90:731–738

    CAS  Google Scholar 

  • Park D, Park SR (2002) Olfactory responses of male and female red-spotted newts to sex pheromones from the opposite sex. Korean J Biol Sci 6:287–292

    Google Scholar 

  • Park D, Propper CR (2001) Repellent function of male pheromones in the red-spotted newt. J Exp Zool 289:404–408

    CAS  PubMed  Google Scholar 

  • Park D, Propper CR (2002) The olfactory organ is activated by a repelling pheromone in the red-spotted newt Notophthalmus viridescens. Korean J Biol Sci 6:233–237

    Google Scholar 

  • Park D, Zawacki SR, Eisthen HL (2003) Olfactory signal modulation by molluscan cardioexcitatory tetrapeptide (FMRFamide) in axolotls (Ambystoma mexicanum). Chem Senses 28:339–348

    Article  CAS  PubMed  Google Scholar 

  • Rogoff JL (1927) The hedonic glands of Triturus viridescens: a structural and functional study. Anat Rec 34:132–133

    Google Scholar 

  • Rollmann SM, Houck LD, Feldhoff RC (1999) Proteinaceous pheromone affecting female receptivity in a terrestrial salamander. Science 285:1907–1909

    Article  CAS  PubMed  Google Scholar 

  • Sam M, Vora S, Malnic B, Ma W, Novotny MV, Buck LB (2001) Odorants may arouse instinctive behaviors. Nature 412:142

    Article  CAS  PubMed  Google Scholar 

  • Schaffer HB (1993) Phylogenetics of model organisms: the laboratory axolotl, Ambystoma mexicanum. Syst Biol 42:508–522

    Google Scholar 

  • Semke E, Distel H, Hudson R (1995) Specific enhancement of olfactory receptor sensitivity associated with foetal learning of food odors in the rabbit. Naturwissenschaften 82:148–149

    Article  CAS  PubMed  Google Scholar 

  • Shoop CR (1960) The breeding habits of the mole salamander, Ambystoma talpoideum (Holbrook), in Southeastern Louisiana. Tulane Stud Zool Bot 8:65–82

    Google Scholar 

  • Simons RR, Felgenhauer BE, Jaeger RG (1994) Salamander scent marks: site of production and their role in territorial defense. Anim Behav 48:97–103

    Article  Google Scholar 

  • Sipos ML, Wysocki CJ, Nyby JG, Wysocki L, Nemura TA (1995) An ephemeral pheromone of female house mice: perception via the main and accessory olfactory systems. Physiol Behav 58:529–534

    Article  CAS  PubMed  Google Scholar 

  • Sorensen PW, Stacey NE (1999) Evolution and specialization of fish hormonal pheromones. In: Johnston RE, Müller-Schwarze D, Sorensen PW (eds) Advances in chemical signals in vertebrates. Kluwer Academic/Plenum Press, New York, pp 15–48

  • Stacey N, Chojnacki A, Narayanan A, Cole T, Murphy C (2003) Hormonally derived sex pheromones in fish: Exogenous cues and signals from gonad to brain. Can J Physiol Pharmacol 81:329–341

    Article  CAS  PubMed  Google Scholar 

  • Swann J, Rahaman F, Bijak T, Fiber J (2001) The main olfactory system mediates pheromone-induced fos expression in the extended amygdala and preoptic area of the male Syrian hamster. Neuroscience 105:695–706

    Article  CAS  PubMed  Google Scholar 

  • Toyoda F, Hayakawa Y, Ichikawa M, Kikuyama S (1999) Olfactory responses to a female-attracting pheromone in the newt, Cynops pyrrhogaster. In: Johnston RE, Müller-Schwarze D, Sorensen PW (eds) Advances in chemical signals in vertebrates. Kluwer Academic/Plenum Press, New York, pp 607–615

  • Trinh K, Storm DR (2003) Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 6:519–525

    CAS  PubMed  Google Scholar 

  • Une M, Hoshita T (1994) Natural occurrence and chemical synthesis of bile alcohols, higher bile acids, and short side chain bile acids. Hiroshima J Med Sci 43:37–67

    CAS  PubMed  Google Scholar 

  • Verrell PA (1985) Male mate choice for large fecund females in the red-spotted newt, Notophthalmus viridescens: how is size assessed? Herpetologica 41:382–386

    Google Scholar 

  • Wabnitz PA, Bowie JH, Tyler MJ, Wallace JC, Smith BP (1999) Aquatic sex pheromone from a male tree frog. Nature 401:444–445

    Article  CAS  PubMed  Google Scholar 

  • Wang H-W, Wysocki CJ, Gold GH (1993) Induction of olfactory receptor sensitivity in mice. Science 260:998–1000

    CAS  PubMed  Google Scholar 

  • Wysocki CJ, Meredith M (1987) The vomeronasal system. In: Finger T, Silver W (eds) Neurobiology of taste and smell. Wiley, New York, pp 125–150

  • Yamamoto K, Kawai Y, Hayashi T, Ohe Y, Hayashi H, Toyoda F, Kawahara G, Iwata T, Kikuyama S (2000) Silefrin, a sodefrin-like pheromone in the abdominal gland of the sword-tailed newt, Cynops ensicauda. FEBS Lett 472:267–270

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, Upper Saddle River, NJ

  • Zhang C, Brown SB, Hara TJ (2001) Biochemical and physiological evidence that bile acids produced and released by lake char (Salvelinus namaycush) function as chemical signals. J Comp Physiol B 171:161–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Schlegel for assistance with these experiments, and Shenna Washington for assistance and for comments on the manuscript. Thanks to Barbara Lundrigan and Fred Dyer for statistical advice, to Jared Fine for information about the comparative biology of bile acids, and to Dale Sengelaub, in whose laboratory the pilot study for these experiments was first conducted. These experiments would not have been possible without the logistical help of Sandra Borland and Jill Gresens of the Indiana University Axolotl Colony; we also gratefully acknowledge the financial support of the National Science Foundation (IBN 9982934) and National Institutes of Health (DC05366). All experiments were conducted according to guidelines established by the US Public Health Service, and were approved by the Michigan State University All-University Committee on Animal Use and Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Eisthen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D., McGuire, J.M., Majchrzak, A.L. et al. Discrimination of conspecific sex and reproductive condition using chemical cues in axolotls (Ambystoma mexicanum). J Comp Physiol A 190, 415–427 (2004). https://doi.org/10.1007/s00359-004-0510-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0510-y

Keywords

Navigation