Skip to main content
Log in

Mechanisms of stick insect locomotion in a gap-crossing paradigm

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Locomotion of stick insects climbing over gaps of more than twice their step length has proved to be a useful paradigm to investigate how locomotor behaviour is adapted to external conditions. In this study, swing amplitudes and extreme positions of single steps from gap-crossing sequences have been analysed and compared to corresponding parameters of undisturbed walking. We show that adaptations of the basic mechanisms concern movements of single legs as well as the coordination between the legs. Slowing down of stance velocity, searching movements of legs in protraction and the generation of short steps are crucial prerequisites in the gap-crossing task. The rules of leg coordination described for stick insect walking seem to be modified, and load on the supporting legs is assumed to have a major effect on coordination especially in slow walking. Stepping into the gap with a front leg and antennal contact with the far edge of the gap provide information, as both events influence the following leg movements, whereas antennal “non-contact” seems not to contain information. Integration of these results into the model of the walking controller can improve our understanding of insect locomotion in highly irregular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AEP:

anterior extreme position

fAEP:

fictive anterior extreme position

PEP:

posterior extreme position

TOT:

treading-on-tarsus

References

  • Bässler U (1977) Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. J Comp Physiol A 121:99–113

    Google Scholar 

  • Bässler U (1983) Neural basis of elementary behaviour in stick insects. Springer, Berlin Heidelberg New York

  • Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res Rev 27:65–88

    Google Scholar 

  • Bläsing B, Cruse H (2004) Stick insect locomotion in a complex environment: climbing over large gaps. J Exp Biol (in press)

    Google Scholar 

  • Brooks R (1991) Intelligence without reason. Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91)

  • Cruse H (1976a) The function of the legs in the free walking stick insect, Carausius morosus. J Comp Physiol A 112:235–262

    Google Scholar 

  • Cruse H (1976b) The control of the body position in the stick insect (Carausius morosus) when walking over uneven surfaces. Biol Cybern 24:25–33

    Google Scholar 

  • Cruse H (1979) The control of the anterior extreme position of the hind leg of a walking insect. Carausius morosus. Physiol Entomol 4:121–124

    Google Scholar 

  • Cruse H (1985a) Coactivating influences between neighbouring legs in walking insects. J Exp Biol 114:513–519

    Google Scholar 

  • Cruse H (1985b) Which parameters control the leg movement of a walking insect? II. The start of the swing phase. J Exp Biol 116:357–362

    Google Scholar 

  • Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? TINS 13:15–21

    CAS  PubMed  Google Scholar 

  • Cruse H, Epstein S (1982) Peripheral influences on the movement of the legs in a walking insect Carausius morosus. J Exp Biol 101:161–170

    Google Scholar 

  • Cruse H, Frantsevich L (1997) The stick insect Obrimus asperrimus (Phasmida: Bacillidae) walking on different surfaces. J Insect Physiol 43:447–455

    Article  Google Scholar 

  • Cruse H, Saxler G (1980) Oscillations of force in the standing legs of a walking insect (Carausius morosus). Biol Cybern 36:159–163

    Google Scholar 

  • Cruse H, Schwarze W (1988) Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausius morosus). J Exp Biol 138:455–469

    Google Scholar 

  • Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet—a biologically inspired network to control six-legged walking. Neural Networks 11:1435–1447

    Article  Google Scholar 

  • Dean J, Wendler G (1982) Stick insect walking on a wheel: perturbations induced by obstruction of leg protraction. J Comp Physiol 148:195–207

    Google Scholar 

  • Dean J, Wendler G (1983) Stick insect locomotion on a wheel: interleg coordination of leg position. J Exp Biol 103:203–216

    Google Scholar 

  • Dean J, Wendler G (1984) Stick insect locomotion on a wheel: patterns of stopping and starting. J Exp Biol 110:203–216

    Google Scholar 

  • Delcomyn F (1985) Factors regulating insect walking. Annu Rev Entomol 30:239–256

    Article  Google Scholar 

  • Dürr V (2001) Stereotypic leg searching-movements in the stick insect: kinematic analysis, behavioural context and simulation. J Exp Biol 204:1589–1604

    PubMed  Google Scholar 

  • Dürr V, Bläsing B (2000) Antennal movements of two stick insect species: spatio-temporal coordination with leg movements. Zoology 103 [Suppl III (DZG 93.1)]:17

  • Frantsevich I, Frantsevich L (1996) Space constancy in form perception by the stick insect. Naturwissenschaften 83:323–324

    Article  CAS  Google Scholar 

  • Graham D (1972) A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J Comp Physiol 81:23–52

    Google Scholar 

  • Graham D (1979) Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus. 2. Changes in walking co-ordination. Biol Cybern 32:147–152

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Google Scholar 

  • Graham D, Epstein S (1985) Behaviour and motor output for an insect walking on a slippery surface. J Exp Biol 118:287–296

    Google Scholar 

  • Kindermann T (2002) Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt Behav 9:16–41

    Google Scholar 

  • Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56:173–193

    Google Scholar 

  • Pearson KG, Franklin R (1984) Characteristics of leg movement and patterns of coordination in locusts walking on rough terrain. Int J Robot Res 3:101–112

    Google Scholar 

  • Rixe A (1995) Geometrische und temporale Muster der Bein- und Körperbewegungen beim Kurvenlauf der Stabheuschrecke Carausius morosus. Diplomarbeit, Fakultät für Biologie, Universität Bielefeld

  • Schmitz J, Hassfeld G (1989) The treading-on-tarsus reflex in stick insects: phase dependence and modifications of the motor output during walking. J Exp Biol 143:373–388

    Google Scholar 

  • Wagner H (1996) Verbesserungen der Beinkoordination in einem Laufmodell der Stabheuschrecke mit Hilfe genetischer Algorithmen. Diplomarbeit. Technische Fakultät, Universität Bielefeld

  • Watson JT, Ritzmann RE, Zill SN, Pollack AJ (2002) Control of obstacle climbing in the cockroach Blaberus discoidalis. I. Kinematics. J Comp Physiol A 188:39–53

    Article  Google Scholar 

  • Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant no Cr 58/9-3 of the DFG and the graduate programme “Verhaltensstrategien und Verhaltensoptimierung” (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bläsing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bläsing, B., Cruse, H. Mechanisms of stick insect locomotion in a gap-crossing paradigm. J Comp Physiol A 190, 173–183 (2004). https://doi.org/10.1007/s00359-003-0482-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0482-3

Keywords

Navigation