The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis

Abstract

Foraging desert ants, Cataglyphis fortis, monitor their position relative to the nest by path integration. They continually update the direction and distance to the nest by employing a celestial compass and an odometer. In the present account we addressed the question of how the precision of the ant’s estimate of its homing distance depends on the distance travelled. We trained ants to forage at different distances in linear channels comprising a nest entrance and a feeder. For testing we caught ants at the feeder and released them in a parallel channel. The results show that ants tend to underestimate their distances travelled. This underestimation is the more pronounced, the larger the foraging distance gets. The quantitative relationship between training distance and the ant’s estimate of this distance can be described by a logarithmic and an exponential model. The ant’s odometric undershooting could be adaptive during natural foraging trips insofar as it leads the homing ant to concentrate the major part of its nest-search behaviour on the base of its individual foraging sector, i.e. on its familiar landmark corridor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage 64:912–923

    Google Scholar 

  2. Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  3. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Cheng K, Srinivasan MV, Zhang SW (1999) Error is proportional to distance measured by honeybees: Weber’s law in the odometer. Anim Cogn 2:11–16

    Article  Google Scholar 

  5. Chittka L, Williams NM, Rasmussen H, Thomson JD (1999) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond Ser B 266:45–50

    Article  Google Scholar 

  6. Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82:38–40

    Article  CAS  Google Scholar 

  7. Esch HE, Zhang SW, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411:581–583

    Article  CAS  PubMed  Google Scholar 

  8. Fechner GT (1860) Elemente der Psychophysik. Breitkopf und Härtel, Leipzig

  9. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York

  10. Frisch K von, Kratky O (1962) Über die Beziehung zwischen Flugweite und Tanztempo bei der Entfernungsmeldung der Bienen. Naturwissenschaften 49:409–417

    Google Scholar 

  11. Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497

    Article  Google Scholar 

  12. Heusser D, Wehner R (2002) The visual centring response in desert ants, Cataglyphis fortis. J Exp Biol 205:585–590

    PubMed  Google Scholar 

  13. Mittelstaedt H (1983) The role of multimodel convergence in homing by path integration. In: Horn E (ed) Multimodel convergences in sensory systems. Fortschritte der Zoologie, vol 28. Fischer, Stuttgart, pp 197–212

  14. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    Google Scholar 

  15. Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530

    Google Scholar 

  16. Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled. J Comp Physiol A 177:21–27

    Google Scholar 

  17. Ronacher B, Gallizzi K, Wohlgemuth S, Wehner R (2000) Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J Exp Biol 203:1113–1121

    PubMed  Google Scholar 

  18. Schöne H (1996) Optokinetic speed control and estimation of travel distance in walking honeybees. J Comp Physiol A 179:587–592

    Google Scholar 

  19. Si A, Srinivasan MV, Zhang SW (2003) Honeybee navigation: properties of the visually driven ‘odometer’. J Exp Biol 206:1265–1273

    Article  PubMed  Google Scholar 

  20. Sokal RR, Rohlf FJ (1998) Biometry, 3rd edn. Freeman, New York

  21. Srinivasan MV, Zhang SW, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199:237–244

    PubMed  Google Scholar 

  22. Srinivasan MV, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2513–2522

    PubMed  Google Scholar 

  23. Srinivasan MV, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:851–853

    CAS  PubMed  Google Scholar 

  24. Stevens SS (1957) On the psychophysical law. Psychol Rev 64:153–181

    PubMed  Google Scholar 

  25. Visscher KP, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801

    Google Scholar 

  26. Wehner R (1987) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara desert) and Ocymyrmex (Namib desert). In: Pasteels JM, Deneubourg J-L (eds) From individual to collective behavior in social insects. Birkhäuser, Basel, pp 15–42

  27. Wehner R (1992) Arthropods. In: Papi F (ed) Animal homing. Chapman and Hall, London, pp 45–144

  28. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    CAS  Google Scholar 

  29. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338

    Google Scholar 

  30. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  31. Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798

    CAS  PubMed  Google Scholar 

  32. Wohlgemuth S, Ronacher B, Wehner R (2002) Distance estimation in the third dimension in desert ants. J Comp Physiol A 188:273–281

    Article  CAS  Google Scholar 

  33. Zollikofer CPE (1988) Vergleichende Untersuchungen zum Laufverhalten von Ameisen (Hymenoptera: Formicidae). PhD thesis, University of Zürich

Download references

Acknowledgements

We thank Robyn Tourle for help in the field experiments and Dr Larry Abbott for helpful comments on an earlier version of the manuscript. Financial support came from the Swiss National Science Foundation (grant no. 31–61844.00) and the G. and A. Claraz Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Wehner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sommer, S., Wehner, R. The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis . J Comp Physiol A 190, 1–6 (2004). https://doi.org/10.1007/s00359-003-0465-4

Download citation

Keywords

  • Ants
  • Cataglyphis
  • Odometry
  • Path integration
  • Travel distance