Skip to main content
Log in

Prediction of Forest Fire Risk for Artillery Military Training using Weighted Support Vector Machine for Imbalanced Data

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Since the 1953 truce, the Republic of Korea Army (ROKA) has regularly conducted artillery training, posing a risk of wildfires — a threat to both the environment and the public perception of national defense. To assess this risk and aid decision-making within the ROKA, we built a predictive model of wildfires triggered by artillery training. To this end, we combined the ROKA dataset with meteorological database. Given the infrequent occurrence of wildfires (imbalance ratio \(\approx \) 1:24 in our dataset), achieving balanced detection of wildfire occurrences and non-occurrences is challenging. Our approach combines a weighted support vector machine with a Gaussian mixture-based oversampling, effectively penalizing misclassification of the wildfires. Applied to our dataset, our method outperforms traditional algorithms (G-mean=0.864, sensitivity=0.956, specificity= 0.781), indicating balanced detection. This study not only helps reduce wildfires during artillery trainings but also provides a practical wildfire prediction method for similar climates worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

While some of the data employed in the study is accessible at the following URL: https://github.com/jihyun-nam/Prediction-of-Forest-Fire-Risk, it is important to note that obtaining the complete dataset necessitates permission from the Republic of Korea Army. Therefore, kindly request the author to acquire the necessary permissions for the entire dataset.

Code Availability

The codes utilized in this paper can be accessed through the following URL: https://github.com/jihyun-nam/Prediction-of-Forest-Fire-Risk.

References

  • Ahmadlou, M., Karimi, M., & Pontius, R. G., Jr. (2022). A new framework to deal with the class imbalance problem in urban gain modeling based on clustering and ensemble models. Geocarto International, 37(19), 5669–5692.

    Article  Google Scholar 

  • Ahmadlou, M., Karimi, M., & Al-Ansari, N. (2023). The use of maximum entropy and ecological niche factor analysis to decrease uncertainties in samples for urban gain models. GIScience & Remote Sensing, 60(1), 2222980.

    Article  Google Scholar 

  • Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying Support Vector Machines to Imbalanced Datasets. In J.-F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Machine Learning: ECML 2004 (pp. 39–50). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg.

  • Al-Fugara, A., Mabdeh, A. N., Ahmadlou, M., Pourghasemi, H. R., Al-Adamat, R., Pradhan, B., & Al-Shabeeb, A. R. (2021). Wildland fire susceptibility mapping using support vector regression and adaptive neuro-fuzzy inference system-based whale optimization algorithm and simulated annealing. ISPRS International Journal of Geo-Information, 10(6), 382.

    Article  Google Scholar 

  • Anand, R., Mehrotra, K., Mohan, C., & Ranka, S. (1993). An improved algorithm for neural network classification of imbalanced training sets. IEEE Transactions on Neural Networks, 4(6), 962–969.

    Article  Google Scholar 

  • Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval, (1st ed.). Harlow: Addison Wesley.

  • Bang, S., & Jhun, M. (2014). Weighted support vector machine using k-Means clustering. Communications in Statistics - Simulation and Computation, 43(10), 2307–2324.

    Article  MathSciNet  Google Scholar 

  • Barandela, R., Valdovinos, R. M., Sánchez, J. S., & Ferri, F. J. (2004). The imbalanced training sample problem: Under or over sampling? In A. Fred, T. M. Caelli, R. P. W. Duin, A. C. Campilho, & D. de Ridder (Eds.), Structural, Syntactic, and Statistical Pattern Recognition (pp. 806–814). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg.

  • Barnes, S. L. (1964). A technique for maximizing details in numerical weather map analysis. Journal of Applied Meteorology and Climatology, 3(4), 396–409.

    Article  Google Scholar 

  • Beckmann, M., Ebecken, N., & Lima, B. (2015). A KNN undersampling approach for data balancing. Journal of Intelligent Learning Systems and Applications, 7, 104–116.

    Article  Google Scholar 

  • Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(10), 27.

    Google Scholar 

  • Belloi, A. P., Campesi, S., Nieddu, C., Tola, F., Deiana, S., Zizi, M., Muntoni, G., Tesei, G., Delitala, A., & Dessy, C. (2022). Strategies and measures for wildfire risk mitigation in the mediterranean area: The MED-Star project. Environmental Sciences Proceedings, 17(1), 124.

  • Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14, 106.

    Article  Google Scholar 

  • Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In T. Theeramunkong, B. Kijsirikul, N. Cercone, & T.-B. Ho (Eds.), Advances in knowledge discovery and data mining (pp. 475–482). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg.

  • Chawla, N., Lazarevic, A., Hall, L., & Bowyer, K. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In: Proceedings of the 7th European conference on principles and practice of knowledge discovery in database (vol. 2838, pp. 107–119)

  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321–357.

    Article  Google Scholar 

  • Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Article  Google Scholar 

  • Cox, T. F., & Cox, M. A. A. (2000). Multidimensional scaling (2nd ed.). CRC Press.

    Book  Google Scholar 

  • Crowley, G., Kwon, S., Ostrofsky, D. F., Clementi, E. A., Haider, S. H., Caraher, E. J., Lam, R., St-Jules, D. E., Liu, M., Prezant, D. J., & Nolan, A. (2019). Assessing the protective metabolome using machine learning in world trade center particulate exposed firefighters at risk for lung injury. Scientific Reports, 9(1), 11939.

    Article  Google Scholar 

  • Debnath, T., & Nakamoto, T. (2022). Predicting individual perceptual scent impression from imbalanced dataset using mass spectrum of odorant molecules. Scientific Reports, 12(1), 3778.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

    MathSciNet  Google Scholar 

  • Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130.

    Article  Google Scholar 

  • Fernández, A., del Jesus, M. J., & Herrera, F. (2009). Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. International Journal of Approximate Reasoning, 50(3), 561–577.

    Article  Google Scholar 

  • Gao, M., Hong, X., Chen, S., & Harris, C. J. (2011). A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing, 74(17), 3456–3466.

    Article  Google Scholar 

  • Gao, S., & Li, S. (2022). Bloody Mahjong playing strategy based on the integration of deep learning and XGBoost. CAAI Transactions on Intelligence Technology, 7(1), 95–106.

    Article  Google Scholar 

  • Gasparin, A., Lukovic, S., & Alippi, C. (2022). Deep learning for time series forecasting: The electric load case. CAAI Transactions on Intelligence Technology, 7(1), 1–25.

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  • Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.

    Article  Google Scholar 

  • Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16(1), 4.

    Article  Google Scholar 

  • Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. SpringerIn D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D.-S. Huang, X.-P. Zhang, & G.-B. Huang (Eds.), Advances in intelligent computing (Vol. 3644, pp. 878–887). Berlin, Heidelberg: Berlin Heidelberg.

    Chapter  Google Scholar 

  • Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123.

    Article  Google Scholar 

  • He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.

    Article  Google Scholar 

  • Jafari Goldarag, Y., Mohammadzadeh, A., & Ardakani, A. S. (2016). Fire risk assessment using neural network and logistic regression. Journal of the Indian Society of Remote Sensing, 44(6), 885–894.

    Article  Google Scholar 

  • Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.

    Article  Google Scholar 

  • Jiao, Z., Zhang., Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019). A deep learning based forest fire detection approach using UAV and YOLOv3. In 2019 1st international conference on industrial artificial intelligence (IAI) (pp. 1–5)

  • Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.

    Article  Google Scholar 

  • Kim, S., Lee, W., Park, Y.-s., Lee, H.-W., & Lee, Y.-T. (2016). Forest fire monitoring system based on aerial image. In 2016 3rd International conference on information and communication technologies for disaster management (ICT-DM) (pp. 1–6)

  • Kloprogge, P., van der Sluijs, J. P., & Petersen, A. C. (2011). A method for the analysis of assumptions in model-based environmental assessments. Environmental Modelling & Software, 26(3), 289–301.

    Article  Google Scholar 

  • Koziarski, M. (2021). CSMOUTE: Combined synthetic oversampling and undersampling technique for imbalanced data classification. In 2021 International joint conference on neural networks (IJCNN) (pp. 1–8)

  • Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232.

    Article  Google Scholar 

  • Krueger, E. S., Levi, M. R., Achieng, K. O., Bolten, J. D., Carlson, J. D., Coops, N. C., Holden, Z. A., Magi, B. I., Rigden, A. J., & Ochsner, T. E. (2022). Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. International Journal of Wildland Fire, 32(2), 111–132.

    Article  Google Scholar 

  • Kubát, M, & Matwin, S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In International conference on machine learning

  • Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550

  • López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113–141.

    Article  Google Scholar 

  • Mani, I. (2003). KNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings of workshop on learning from imbalanced datasets

  • Mease, D., Wyner, A. J., & Buja, A. (2007). Boosted classification trees and class probability/quantile estimation. Journal of Machine Learning Research, 8(16), 409–439.

    Google Scholar 

  • Ngoc Thach, N., Bao-Toan Ngo, D., Xuan-Canh, P., Hong-Thi, N., Hang Thi, B., Nhat-Duc, H., & Dieu, T. B. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46, 74–85.

    Article  Google Scholar 

  • Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2011). A survey on graphical methods for classification predictive performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1601–1618.

    Article  Google Scholar 

  • Ramentol, E., Verbiest, N., Bello, R., Caballero, Y., Cornelis, C., & Herrera, F. (2012). SMOTE-FRST: A new resampling method using fuzzy rough set theory. In Uncertainty modeling in knowledge engineering and decision making, world scientific proceedings series on computer engineering and information science (Vol. 7, WORLD SCIENTIFIC, pp. 800–805)

  • Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192–201.

    Article  Google Scholar 

  • Shamsudin, H., Yusof, U. K., Jayalakshmi, A., & Akmal Khalid, M. N. (2020). Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. In 2020 IEEE 16th international conference on control & automation (ICCA) (pp. 803–808)

  • Shaw, J. D., Goeking, S. A., Menlove, J., & Werstak, C. E., Jr. (2017). Assessment of fire effects based on forest inventory and analysis data and a long-term fire mapping data set. Journal of Forestry, 115(4), 258–269.

    Article  Google Scholar 

  • Stocks, B. J., Lawson, B. D., Alexander, M. E., Wagner, C. E. V., McAlpine, R. S., Lynham, T. J., & Dubé, D. E. (1989). The Canadian forest fire danger rating system: An overview. The Forestry Chronicle, 65(6), 450–457.

    Article  Google Scholar 

  • Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378.

    Article  Google Scholar 

  • Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics SMC-6 (11), 769–772

  • United States Department of Agriculture (2015) FARSITE: Fire Area Simulator - Model Development and Evaluation. CreateSpace Independent Publishing Platform

  • Van Wagner, C. E. (1987). Development and structure of the Canadian forest fire weather index system. Forestry Technical Report, 35, 35.

    Google Scholar 

  • Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of support vector machines. In Proceedings of the international joint conference on AI, Stockholm (Vol. 55, pp 60)

  • Walter, S. D. (2005). The partial area under the summary ROC curve. Statistics in Medicine, 24(13), 2025–2040.

    Article  MathSciNet  Google Scholar 

  • Winkler, R. L. (1969). Scoring rules and the evaluation of probability assessors. Journal of the American Statistical Association, 64(327), 1073–1078, 2283486

  • Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based on ensemble learning. Forests, 12(2), 217.

    Article  Google Scholar 

  • Yu, Y., Mao, J., Wullschleger, S. D., Chen, A., Shi, X., Wang, Y., Hoffman, F. M., Zhang, Y., & Pierce, E. (2022). Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 13(1), 1250.

    Article  Google Scholar 

  • Zhang, Q., Xiao, J., Tian, C., Chun-Wei Lin, J., & Zhang, S. (2023). A robust deformed convolutional neural network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 8(2), 331–342.

    Article  Google Scholar 

  • Zhao, X.-M., Li, X., Chen, L., & Aihara, K. (2008). Protein classification with imbalanced data. Proteins: Structure, Function, and Bioinformatics, 70(4), 1125–1132

Download references

Funding

Ji Hyun Nam was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Science and ICT (MSIT) (RS-2023-00278691). Seongil Jo was supported by Basic Science Research Program through the NRF funded by the Korea government (MSIT) (RS-2023-00209229). Jaeoh Kim was supported by the NRF Grant through the Korea Government (MSIT) under Grant NRF-2022R1A5A7033499.

Author information

Authors and Affiliations

Authors

Contributions

J.H. Nam and J. Mun contributed equally to this work, while both S. Jo and J. Kim supervised the findings as corresponding authors.

Corresponding author

Correspondence to Jaeoh Kim.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ji Hyun Nam and Jongmin Mun are the first authors of this paper. Jaeoh Kim is the corresponding author and Seongil Jo is the Co-corresponding author of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, J.H., Mun, J., Jo, S. et al. Prediction of Forest Fire Risk for Artillery Military Training using Weighted Support Vector Machine for Imbalanced Data. J Classif 41, 170–189 (2024). https://doi.org/10.1007/s00357-024-09467-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-024-09467-1

Keywords

Navigation