Ah-Pine, J., & Wang, X. (2016). Similarity based hierarchical clustering with an application to text collections. In Boström, H., Knobbe, A., Soares, C., & Papapetrou, P. (Eds.) Proceedings of the 15th International Symposium on Intelligent Data Analysis (IDA 2016), Lecture Notes in Computer Sciences (pp. 320–331). Stockholm.
Ambroise, C., Dehman, A., Neuvial, P., Rigaill, G., Vialaneix, N. (2019). Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics. Algorithms for Molecular Biology, 14, 22.
Article
Google Scholar
Arlot, S., Brault, V., Baudry, J.-P., Maugis, C., Michel, B. (2016). capushe: CAlibrating Penalities Using Slope HEuristics. R package version 1.1.1.
Arlot, S., Celisse, A., Harchaoui, Z. (2019). A kernel multiple change-point algorithm via model selection. Submitted for publication. arXiv:1202.3878v3. Now published in JMLR, see https://jmlr.org/papers/v20/16-155.html Bibtex entry: https://jmlr.org/papers/v20/16-155.bib.
Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337–337.
MathSciNet
Article
Google Scholar
Batagelj, V. (1981). Note on ultrametric hierarchical clustering algorithms. Psychometrika, 46(3), 351–352.
MathSciNet
Article
Google Scholar
Bennett, K.D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytologist, 132(1), 155–170.
Article
Google Scholar
Chavent, M., Kuentz-Simonet, V., Labenne, A., Saracco, J. (2018). Clustgeo2: an R package for hierarchical clustering with spatial constraints. Computational Statistics, 33(4), 1799–1822.
MathSciNet
Article
Google Scholar
Chen, J., & Ye, J. (2008). Training SVM with indefinite kernels. In Cohen, W., McCallum, A., & Roweis, S. (Eds.) Proceedings of the 25th International Conference on Machine Learning (ICML 2008) (pp. 136–146). New York: ACM.
Chen, Y., Garcia, E., Gupta, M., Rahimi, A., Cazzanti, L. (2009). Similarity-based classification: concepts and algorithm. Journal of Machine Learning Research, 10, 747–776.
MathSciNet
MATH
Google Scholar
Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005, P09008.
Article
Google Scholar
Dehman, A. (2015). Spatial clustering of linkage disequilibrium blocks for genome-wide association studies, PhD thesis, Université Paris Saclay.
Dixon, J., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J., Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380.
Article
Google Scholar
Ferligoj, A., & Batagelj, V. (1982). Clustering with relational constraint. Psychometrika, 47(4), 413–426.
MathSciNet
Article
Google Scholar
Fraser, J., Ferrai, C., Chiariello, A.M., Schueler, M., Rito, T., Laudanno, G., Barbieri, M., Moore, B.L., Kraemer, D.C., Aitken, S., Xie, S.Q., Morris, K.J., Itoh, M., Kawaji, H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A.R., The FANTOM Consortium, Semple, C.A., Dostie, J., Pombo, A., Nicodemi, M. (2015). Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Molecular Systems Biology, 11, 852.
Article
Google Scholar
Gordon, A. (1996). A survey of constrained classification. Computational Statistics & Data Analysis, 21(1), 17–29.
MathSciNet
Article
Google Scholar
Grimm, E.C. (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained analysis by the method of incremental sum of squares. Computers & Geosciences, 13(1), 13–35.
Article
Google Scholar
Haddad, N., Vaillant, C., Jost, D. (2017). IC-Finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic Acids Research, 45(10), e81–e81.
Google Scholar
Hartigan, J.A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association, 62(320), 1140–1158.
MathSciNet
Article
Google Scholar
Imakaev, M., Fudenberg, G., McCord, R., Naumova, N., Goloborodko, A., Lajoie, B., Dekker, J., Mirny, L. (2012). Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods, 9(10), 999–1003.
Article
Google Scholar
Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.
Article
Google Scholar
Krislock, N., & Wolkowicz, H. (2012). Handbook on semidefinite, conic and polynomial optimization, volume 166 of International Series in Operations Research & Management Science, chapter Euclidean distance matrices and applications, (pp. 879–914). New York: Springer.
MATH
Google Scholar
Kruskal, J. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.
MathSciNet
Article
Google Scholar
Lance, G., & Williams, W. (1967). A general theory of classificatory sorting strategies: 1. Hierarchical systems. The Computer Journal, 9(4), 373–380.
Article
Google Scholar
Lebart, L. (1978). Programme d’agrégation avec contraintes. Les Cahiers de l’Analyse des Données, 3(3), 275–287.
Google Scholar
Miyamoto, S., Abe, R., Endo, Y., Takeshita, J.-I. (2015). Ward method of hierarchical clustering for non-Euclidean similarity measures. In Proceedings of the VIIth International Conference of Soft Computing and Pattern Recognition (SoCPaR 2015). Fukuoka: IEEE.
Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion. Journal of Classification, 31(3), 274–295.
MathSciNet
Article
Google Scholar
Qin, J., Lewis, D.P., Noble, W.S. (2003). Kernel hierarchical gene clustering from microarray expression data. Bioinformatics, 19(16), 2097–2104.
Article
Google Scholar
Rammal, R., Toulouse, G., Virasoro, M.A. (1986). Ultrametricity for physicists. Reviews of Modern Physics, 58(3), 765–788.
MathSciNet
Article
Google Scholar
Schleif, F.-M., & Tino, P. (2015). Indefinite proximity learning: a review. Neural Computation, 27(10), 2039–2096.
MathSciNet
Article
Google Scholar
Schoenberg, I. (1935). Remarks to Maurice fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Annals of Mathematics, 36, 724–732.
MathSciNet
Article
Google Scholar
Schölkopf, B., & Smola, A.J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press.
Steinley, D., & Hubert, L. (2008). Order-constrained solutions in K-means clustering: even better than being globally optimal. Psychometrika, 73(4), 647–664.
MathSciNet
Article
Google Scholar
Strauss, T., & von Maltitz, M.J. (2017). Generalising Ward’s method for use with Manhattan distances. PLoS ONE, 12, e0168288.
Article
Google Scholar
Székely, G.J., & Rizzo, M.L. (2005). Hierarchical clustering via joint between-within distances: extending Ward’s minimum variance method. Journal of Classification, 22(2), 151–183.
MathSciNet
Article
Google Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.
MathSciNet
Article
Google Scholar
Wickham, H. (2016). ggplot2: elegant graphics for data analysis. New York: Springer.
Book
Google Scholar
Wishart, D. (1969). An algorithm for hierarchical classifications. Biometrics, 25(1), 165–170.
Article
Google Scholar
Young, G., & Householder, A. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3, 19–22.
Article
Google Scholar
Zufferey, M., Tavernari, D., Oricchio, E., Ciriello, G. (2018). Comparison of computational methods for the identification of topologically associating domains. Genome Biology, 19(1), 217.
Article
Google Scholar