Skip to main content
Log in

Functional PCA and Base-Line Logit Models

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

In many statistical applications data are curves measured as functions of a continuous parameter as time. Despite of their functional nature and due to discrete-time observation, these type of data are usually analyzed with multivariate statistical methods that do not take into account the high correlation between observations of a single curve at nearby time points. Functional data analysis methodologies have been developed to solve these type of problems. In order to predict the class membership (multi-category response variable) associated to an observed curve (functional data), a functional generalized logit model is proposed. Base-line category logit formulations will be considered and their estimation based on basis expansions of the sample curves of the functional predictor and parameters. Functional principal component analysis will be used to get an accurate estimation of the functional parameters and to classify sample curves in the categories of the response variable. The good performance of the proposed methodology will be studied by developing an experimental study with simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AGRESTI, A. (2002), Categorical Data Analysis, New York: Wiley.

    Book  MATH  Google Scholar 

  • AGUILERA, A.M., GUTIÉRREZ, R., and VALDERRAMA, M.J. (1996), “Approximation of Estimators in the PCA of a Stochastic Process Using B-splines”, Communications in Statistics - Simulation and Computation, 25(3), 671–690.

    Article  MATH  MathSciNet  Google Scholar 

  • AGUILERA, A.M., ESCABIAS, M., and VALDERRAMA, M.J. (2006), ”Using Principal Components for Estimating Logistic Regression with High-Dimensional Multicollinear Data“, Computational Statistics and Data Analysis, 50(8), 1905–1924.

    Article  MATH  MathSciNet  Google Scholar 

  • AGUILERA, A.M., ESCABIAS, M., and VALDERRAMA, M.J. (2008), “Discussion of Different Logistic Models with Functional Data. Application to Systemic Lupus Erythematosus”, Computational Statistics and Data Analysis, 53(1), 151–163.

    Article  MATH  MathSciNet  Google Scholar 

  • AGUILERA, A.M., ESCABIAS, M., PREDA, C., and SAPORTA, G. (2010), ”Using Basis Expansions for Estimating Functional PLS Regression. Applications with Chemometric Data“, Chemometrics and Intelligent Laboratory Systems, 104(2), 289–305.

    Article  Google Scholar 

  • CARDOT, H., FAIVRE, R., and GOULARD, M. (2003), “Functional Approaches for Predicting Land Use with the Temporal Evolution of Coarse Resolution Remote Sensing Data”, Journal of Applied Statistics, 30(10), 1185–1199.

    Article  MATH  MathSciNet  Google Scholar 

  • CARDOT, H., and SARDA, P. (2005), ”Estimation in Generalized Linear Models for Functional Data Via Penalized Likelihood“, Journal of Multivariate Analysis, 92, 24–41.

    Article  MATH  MathSciNet  Google Scholar 

  • CHAMROUKHI, F., SAMÉ, A., GOVAERT, G., and AKNIN, P. (2010), “A Hidden Process Regression Model for Functional Data Description. Application to Curve Discrimination”, Neurocomputing, 73, 1210–1221.

    Article  Google Scholar 

  • ESCABIAS, M., AGUILERA, A.M., and VALDERRAMA, M.J. (2004), ”Principal Component Estimation of Functional Logistic Regression: Discussion of Two Different Approaches“, Journal of Nonparametric Statistics, 16(34), 365–384.

    Article  MATH  MathSciNet  Google Scholar 

  • ESCABIAS, M., AGUILERA, A.M., and VALDERRAMA, M.J. (2005), “Modelling Environmental Data by Functional Principal Component Logistic Regression”, Environmetrics, 16(1), 95–107.

    Article  MathSciNet  Google Scholar 

  • ESCABIAS, M., AGUILERA, A.M., and VALDERRAMA, M.J. (2007), ”Functional PLS Logit Regression Model“, Computational Statistics and Data Analysis, 51(10), 4891–4902.

    Article  MATH  MathSciNet  Google Scholar 

  • ESCABIAS, M., VALDERRAMA, M.J., AGUILERA, A.M., SANTOFIMIA, M. E., and AGUILERA-MORILLO, M. C. (2013), “Stepwise Selection of Functional Covariates in Forecasting Peak Levels of Olive Pollen”, Stochastic Environmental Research and Risk Assessment, 27(2), 367–376.

    Article  Google Scholar 

  • FERRATY, F., and VIEU P. (2003), ”Curves Discrimination: A Nonparametric Functional Approach“, Computational Statistics and Data Analysis, 44(12), 161–173.

    Article  MATH  MathSciNet  Google Scholar 

  • HASTIE, T., TIBSHIRANI, R., and FRIEDMAN, J. (2008), The Elements of Statistical Learning. Data Mining, Inference, and Prediction, (2nd. ed.), New York: Springer.

    Google Scholar 

  • HERVÁS, C., SILVA, M., GUTIÉRREZ, P.A., and SERRANO, A. (2008), ”Multilogistic Regression by Evolutionary Neural Network as a Classification Tool to Discriminate Highly Overlapping Signals: Qualitative Investigation of Volatile Organic Compounds in Polluted Waters by Using Headspace-Mass Spectrometric Analysis“, Chemometrics and Intelligent Laboratory Systems, 92(2), 179–185.

    Article  Google Scholar 

  • JAMES, G.M., and HASTIE, T.J. (2001), “Functional Discriminant Analysis for Irregularly Sampled Curves”, Journal of the Royal Statistical Society. Series B, 63(3), 533–555.

    Article  MATH  MathSciNet  Google Scholar 

  • JAMES, G.M. (2002), ”Generalized Linear Models with Functional Predictors“, Journal of the Royal Statistical Society, Series B, 64(3), 411–432.

    Article  MATH  MathSciNet  Google Scholar 

  • KAYANO, M., DOZONO, K., and KONISHI, S. (2010), “Functional Cluster Analysis Via Orthonormalized Gaussian Basis Expansions and Its Application”, Journal of Classification, 27, 211–230.

    Article  MathSciNet  Google Scholar 

  • MARX, B.D., and EILERS, P.H.C. (1999), ”Generalized Linear Regression on Sampled Signals and Curves. A P-spline Approach“, Technometrics, 41, 1–13.

    Article  Google Scholar 

  • MASSY, W.F. (1965), “Principal Component Regression in Exploratory Statistical Research”, Journal of the American Statistical Association, 60(309), 234–256.

    Article  Google Scholar 

  • MATSUI, H., ARAKI, T., and KONISHI, S. (2011), ”Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition“, Journal of Classification, 28, 227–243.

    Article  MATH  MathSciNet  Google Scholar 

  • MÜLLER, H.G., and STADTMÜLLER, U. (2005), “Generalized Functional Linear Models”, The Annals of Statistics, 33(2), 774–805.

    Article  MATH  MathSciNet  Google Scholar 

  • OCAÑA, F.A., AGUILERA, A.M., and ESCABIAS, M. (2007), ”Computational Considerations in Functional Principal Component Analysis“, Computational Statistics, 22(3), 449–466.

    Article  MATH  MathSciNet  Google Scholar 

  • PREDA, C., SAPORTA, G., and LÉVÉDER, C. (2007), “PLS Classification of Functional Data”, Computational Statistics, 22(2), 223–235.

    Article  MATH  MathSciNet  Google Scholar 

  • RAMSAY, J.O., and SILVERMAN, B.W. (2002), Applied Functional Data Analysis, New York: Springer-Verlag.

    MATH  Google Scholar 

  • RAMSAY, J.O., and SILVERMAN, B.W. (2005), Functional Data Analysis (2nd ed.), New York: Springer-Verlag.

    Google Scholar 

  • RATCLIFFE, S.J., LEADER, L.R., and HELLER, G.Z. (2002), ”Functional Data Analysis with Application to Periodically Stimulated Foetal Heart Rate Data. II: Functional Logistic Regression“, Statistics in Medicine, 21(8), 1115–1127.

    Article  Google Scholar 

  • SAEYS, W., De KETELAERE, B., and DAIRUS, P. (2008), “Potential Applications of Functional Data Analysis in Chemometrics”, Journal of Chemometrics, 22, 335–344.

    Article  Google Scholar 

  • TAN, H., and BROWN, S.D. (2003), ”Multivariate Calibration of Spectral Data Using Dual-Domain Regression Analysis“, Analytica Chimica Acta, 490, 291–301.

    Article  Google Scholar 

  • TIBSHIRANI, R., SAUNDERS, M., ROSSET, S., ZHU, J., and KNIGHT, K. (2005), “Sparsity and Smoothness Via the Fused Lasso”, Journal of the Royal Statistical Society, Series B, 67(1), 91–108.

    Article  MATH  MathSciNet  Google Scholar 

  • VALDERRAMA, M.J., OCAÑA, F.A., AGUILERA, A.M., and OCAÑA-PEINADO, F.M. (2010), ”Forecasting Pollen Concentration by a Two-Step Functional Model“, Biometrics, 66, 135–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Escabias.

Additional information

This research was supported by Projects MTM2010-20502 from Dirección General de Investigación del MEC, Spain, and FQM-08068 from Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía Spain. We want to thank the referees advisers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escabias, M., Aguilera, A.M. & Aguilera-Morillo, M.C. Functional PCA and Base-Line Logit Models. J Classif 31, 296–324 (2014). https://doi.org/10.1007/s00357-014-9162-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-014-9162-y

Keywords

Navigation