BALÀZS, K., HIDEGKUTI, I., and DE BOECK, P. (2006), “Detecting Heterogeneity in Logistic Regression Models”, Applied Psychological Measurement, 30, 322–344.
MathSciNet
Article
Google Scholar
COHEN, J. (1988), “Statistical Power Analysis for the Behavioral Sciences”, Hillsdale, NJ: Erlbaum.
MATH
Google Scholar
DE KONING, E., SIJTSMA, K., and HAMERS, J.H.M. (2003), “Construction and Validation of a Test for Inductive Reasoning”, European Journal of Psychological Assessment, 19, 24–39.
Article
Google Scholar
EMONS, W.H.M., SIJTSMA, K., and MEIJER, R.R. (2007), “On the Consistency of Individual Classification Using Short Scales”, Psychological Methods, 12, 105–120.
Article
Google Scholar
GOUGH, H.G., and HEILBRUN, A.B. (1980), The Adjective Check List Manual, 1980 Edition, Palo Alto, CA: Consulting Psychologists Press.
Google Scholar
GRAYSON, D.A. (1988), “Two-Group Classification in Latent Trait Theory: Scores With Monotone Likelihood Ratio”, Psychometrika, 53, 383–392.
MathSciNet
MATH
Article
Google Scholar
HATTIE, J. (1985), “Methodology Review: Assessing Unidimensionality of Tests and Items”, Applied Psychological Measurement, 9, 139–164.
Article
Google Scholar
HEMKER, B.T., SIJTSMA, K., and MOLENAAR, I.W. (1995), “Selection of Unidimensional Scales From a Multidimensional Item Bank in the Polytomous Mokken IRT Model”, Applied Psychological Measurement, 19, 337–352.
Article
Google Scholar
HEMKER, B.T., SIJTSMA, K., MOLENAAR, I.W., and JUNKER, B.W. (1997), “Stochastic Ordering Using the Latent Trait and the Sum Score in Polytomous IRT Models”, Psychometrika, 62, 331–347.
MathSciNet
MATH
Article
Google Scholar
HOSMER, D.W., and LEMESHOW, S. (1989), Applied Logistic Regression, New York: Wiley.
Google Scholar
JUNKER, B.W. (1991), “Essential Independence and Likelihood-Based Ability Estimation for Polytomous Items”, Psychometrika, 56, 255–278.
MathSciNet
MATH
Article
Google Scholar
KROSNIK, J.A. (1991), “Response Strategies for Coping With the Cognitive Demands of Attitude Measures in Surveys”, Applied Cognitive Psychology, 5, 213–236.
Article
Google Scholar
MELLENBERGH, G.J. (1996). “Measurement Precision in Test Score and Item Response Models”, Psychological Methods, 1, 293–299.
Article
Google Scholar
MICHALEWICZ, Z. (1996), Genetic Algorithms+ Data Structures = Evolution Programs, New York: Springer.
MATH
Book
Google Scholar
MILLER, A. (2002), Subset Selection in Regression, New York: Chapman and Hall.
MATH
Book
Google Scholar
MOKKEN, R.J. (1971), A Theory and Procedure of Scale Analysis, The Hague, The Netherlands: Mouton/ Berlin: De Gruyter.
MOKKEN, R.J., and LEWIS, C. (1982), “A Nonparametric Approach to the Analysis of Dichotomous Item Responses”, Applied Psychological Measurement, 6, 417–430.
Article
Google Scholar
MOKKEN, R.J., LEWIS, C., and SIJTSMA, K. (1986), “Rejoinder to ‘The Mokken Scale: A Critical Discussion’”, Applied Psychological Measurement, 10, 279–285.
Article
Google Scholar
NANDAKUMAR, R., and STOUT, W.F. (1993), “Refinement of Stout’s Procedure for Assessing Latent Trait Dimensionality”, Journal of Educational Statistics, 18, 41–68.
Article
Google Scholar
ROUSSOS, L.A., STOUT, W.F., and MARDEN, J.I. (1998), “Using New Proximity Measures with Hierarchical Cluster Analysis to Detect Multidimensionality”, Journal of Educational Measurement, 35, 1–30.
Article
Google Scholar
SAMEJIMA, F. (1969), “Estimation of Latent Trait Ability Using a Response Pattern of Graded Scores”, Psychometrika Monograph, No. 17.
SIJTSMA, K., and MEIJER, R.R. (2007), “Nonparametric Item Response Theory and Related Topics”, in Handbook of Statistics, Vol. 26: Psychometrics, eds. C.R. Rao, and S. Sinharay, Amsterdam: Elsevier/North Holland, pp. 719–746.
SIJTSMA, K., and MOLENAAR, I.W. (2002), Introduction to Nonparametric Item Response Theory, Thousand Oaks, CA: Sage.
MATH
Google Scholar
STRAAT, J.H., VAN DER ARK, L.A., and SIJTSMA, K. (2012), “Using Conditional Association to Identify Locally Independent Item Sets”, Manuscript submitted for publication.
TABACHNICK, B.G., and FIDELL, L. S. (2007), Using Multivariate Statistics, Needham Heights, MA: Allyn and Bacon, Inc.
Google Scholar
TATE, R. (2003), “A Comparison of Selected Empirical Methods for Assessing the Structure of Responses to Test Items”, Applied Psychological Measurement, 27, 159–203.
MathSciNet
Article
Google Scholar
THISSEN, D. and WAINER, H. (1982), “Some Standard Errors in Item Response Theory”, Psychometrika, 47, 397–412.
MATH
Article
Google Scholar
VAN ABSWOUDE, A.A.H., VAN DER ARK, L.A., and SIJTSMA, K. (2004), “A Comparative Study of Test Data Dimensionality Assessment Procedures Under Nonparametric IRT Models”, Applied Psychological Measurement, 28, 3–24.
MathSciNet
Article
Google Scholar
VAN ABSWOUDE, A.A.H., VERMUNT, J.K., and HEMKER, B.T. (2007), “Assessing Dimensionality by Maximizing H Coefficient-Based Objective Functions”, Applied Psychological Measurement, 31, 308–330.
MathSciNet
Article
Google Scholar
VAN DER ARK, L.A. (2005), “Stochastic Ordering of the Latent Trait by the Sum Score Under Various Polytomous IRT Models”, Psychometrika, 70, 283–304.
MathSciNet
Article
Google Scholar
VAN DER ARK, L.A. (2007), “Mokken Scale Analysis in R”, Journal of Statistical Software, 20(11), 1–19.
Google Scholar
VAN DER ARK, L.A., and SIJTSMA, K. (2005), “The Effect of Missing Data Imputation on Mokken Scale Analysis”, in New Developments in Categorical Data Analysis for the Social and Behavioral Sciences, eds. L.A. Van der Ark, M.A. Croon, and K. Sijtsma, Mahwah, NJ: Lawrence Erlbaum, pp. 147–166.
VAN DER ARK, L.A., and BERGSMA, W.P. (2010), “A Note on Stochastic Ordering of the Latent Trait Using the Sum of Polytomous Item Scores”, Psychometrika, 75, 272–279.
MathSciNet
MATH
Article
Google Scholar
VAN DER ARK, L.A., CROON, M.A., and SIJTSMA, K. (2008), “Mokken Scale Analysis for Dichotomous Items Using Marginal Models”, Psychometrika, 73, 183–208.
MathSciNet
MATH
Article
Google Scholar
ZHANG, J. (2007), “Conditional Covariance Theory and DETECT for Polytomous Items”, Psychometrika, 72, 69–91.
MathSciNet
MATH
Article
Google Scholar
ZHANG, J., and STOUT, W.F. (1999), “The Theoretical DETECT Index of Dimensionality and its Application to Approximate Simple Structure”, Psychometrika, 64, 213–249.
MathSciNet
Article
Google Scholar