Skip to main content
Log in

Revealed norm obedience

  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

We study a rational decision maker who obeys social norms. In our setup norms prescribe choices in some decision problems. The decision maker obeys norms in situations to which they apply and otherwise maximizes her preference relation. We characterize the class of choice functions that can be explained by this decision procedure, relate this procedure to other decision procedures in the literature, and engage in welfare considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Abusing notation, we will write \(C\left( x_{1},\dots ,x_{k}\right) \) instead of \(C\left( \left\{ x_{1},\dots ,x_{k}\right\} \right) \) for \(x_{j}\in X,\,j=1,\dots ,k\).

  2. That is, \(\succ \) is asymmetric, transitive, and satisfies the following completeness property: \(\forall x,y\in X,x\ne y\) it holds \(x\succ y\) or \(y\succ x\).

  3. To see the details, assume that \(X=\left\{ a,b,c\right\} \) and \(C\) is induced by the sequence of rationales \(\left( P_{i}\right) _{i\in \mathbb {N}} \). W.l.o.g. we can assume \(P_{1}\ne \varnothing \). \(C\left( a,b,c\right) =b\) implies \(\left( a,b\right) \notin P_{1}\) and \(\left( c,b\right) \notin P_{1}\). \(C\left( a,b\right) =a\) implies \(\left( b,a\right) \notin P_{1}\) and \(C\left( a,c\right) =a\) implies \(\left( c,a\right) \notin P_{1}\). Hence \(\left( a,c\right) \in P_{1}\) or \(\left( b,c\right) \in P_{1}\). Either way we have \(\gamma _{P_{1}}\left( a,b,c\right) =\gamma _{P_{1}}\left( a,b\right) \), contradicting \(C\left( a,b,c\right) \ne C\left( a,b\right) \).

  4. Note that Cherepanov et al. (2013) actually derive In from some deeper structure modelling the use of rationalizations in decision making. However for our purposes this derivation is not of interest.

References

  • Baigent N, Gaertner W (1996) Never choose the uniquely largest. A characterization. Econ Theory 8:239–249

    Google Scholar 

  • Bardsley N (2008) Dictator game giving: altruism or artefact? Exp Econ 11:122–133

    Article  Google Scholar 

  • Bernheim DB, Rangel A (2009) Toward choice-theoretic foundations for behavioral welfare economics. Q J Econ 124:51–104

    Article  Google Scholar 

  • Cherepanov V, Feddersen T, Sandroni A (2013) Rationalization. Theor Econ 8:775–800

    Article  Google Scholar 

  • Darley J, Latane B (1968) Bystander intervention in emergencies. Diffusion of responsibility. J Personal Soc Psychol 8:377–383

    Article  Google Scholar 

  • Diekmann A (1985) Volunteers dilemma. J Confl Resolut 29:605–610

    Article  Google Scholar 

  • Durkheim E (1997) The division of labour in society. Free Press, New York

    Google Scholar 

  • Esser H (2001) Soziologie. Spezielle Grundlagen. Sinn und Kultur. Campus, Frankfurt am Main

    Google Scholar 

  • Gaertner W, Xu Y (1999a) On rationalizability of choice functions: a characterization of the median. Soc Choice Welf 16:629–638

    Article  Google Scholar 

  • Gaertner W, Xu Y (1999b) On the structure of choice under different external references. Econ Theory 14:609–620

    Article  Google Scholar 

  • Gaertner W, Xu Y (1999c) Rationality and external reference. Ration Soc 11:169–185

    Article  Google Scholar 

  • Kroneberg C (2005) Die Definition der Situation und die variable Rationalität der Akteure. Ein allgemeines Modell des Handelns. Z fr Soziol 34:344–363

  • Kroneberg C, Heintze I, Mehlkop G (2010a) The interplay of moral norms and instrumental incentives in crime causation. Criminology 48:259–294

  • Kroneberg C, Yaish M, Stocke V (2010b) Norms and rationality in electoral participation and in the rescue of jews in WWII: an application of the model of frame selection. Ration Soc 22:3–36

  • Lleras J, Masatlioglu Y, Nakajima D, Ozbay E (2010) When more is less: limited consideration. Working Paper

  • Manzini P, Mariotti M (2007) Sequentially rationalizable choice. Am Econ Rev 97:1824–1839

    Article  Google Scholar 

  • Manzini P, Mariotti M (2012) Choice by lexicographic semiorders. Theor Econ 7:1–23

    Article  Google Scholar 

  • Masatlioglu Y, Nakajima D, Ozbay EY (2012) Revealed attention. Am Econ Rev 102:2183–2205

    Article  Google Scholar 

  • Masatlioglu Y, Ok EA (2005) Rational choice with status-quo bias. J Econ Theory 121:1–29

    Article  Google Scholar 

  • Mayerl J (2010) Die Low-Cost-Hypothese ist nicht genug. Eine empirische Überprüfung von Varianten des Modells der Frame-Selektion zur besseren Vorhersage der Einflussstärke von Einstellungen auf Verhalten. Z fr Soziol 39:28–59

  • Parsons T (1968) The structure of social action. Free Press, New York

    Google Scholar 

  • Quandt M, Ohr D (2004) Worum geht es, wenn es um nichts geht? Zum Stellenwert von Niedrigkostensituationen in der Rational Choice-Modellierung normkonformen Handelns. Kölner Zeitschrift für Soziologie und Sozialpsychologie 56:683–707

  • Rubinstein A (1998) Modeling bounded rationality. MIT Press, Cambridge

    Google Scholar 

  • Rubinstein A, Salant Y (2006) A model of choice from lists. Theor Econ 1:3–17

    Google Scholar 

  • Rubinstein A, Salant Y (2012) Eliciting welfare preferences from behavioural data sets. Rev Econ Stud 79:375–387

    Article  Google Scholar 

  • Rubinstein A, Zhou L (1999) Choice problems with a ‘reference’ point. Math Soc Sci 37:205–209

    Article  Google Scholar 

  • Salant Y, Rubinstein A (2008) (A, f): choice with frames. Rev Econ Stud 75:1287–1296

    Article  Google Scholar 

  • Samuelson PA (1938) A note on the pure theory of consumers’ behavior. Econometrica 5:61–71

    Google Scholar 

  • Sandbu ME (2007) Fairness and the roads not taken: an experimental test of non-reciprocal set-dependence in distributive preferences. Games Econ Behav 61:113–130

    Article  Google Scholar 

  • Sandroni A (2011) Akrasia, instincts, and revealed preferences. Synthese 181:1–17

    Article  Google Scholar 

  • Tversky A (1972) Elimination by aspects: a theory of choice. Psychol Rev 79:281–299

    Article  Google Scholar 

  • Weber M (1978) Economy and society, University of California Press, Berkeley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Tutić .

Additional information

Thanks to Bea, who suggested the term ‘obedience’, and two referees for good advice.

Appendix

Appendix

Proposition 5

Consider the following choice function: \(C_{1}\left( a,b,c\right) =a\), \(C_{1}\left( a,b\right) =a\), and \(C_{1}\left( b,c\right) =C_{1}\left( a,c\right) =c\). \(C_{1}\) satisfies OD but not AC.

Consider \(C_{2}\left( a,b\right) =C_{2}\left( a,d\right) =a\), \(C_{2}\left( a,c\right) =C_{2}\left( c,d\right) =c\), \(C_{2}\left( b,c\right) =C_{2}\left( b,d\right) =b\). Letting \(C_{2}\left( a,b,c\right) =C_{2}\left( b,c,d\right) =b\), \(C_{2}\left( a,b,d\right) \!=\!C_{2}\left( a,b,c,d\right) =a\), and \(C_{2}\left( a,c,d\right) =c\), we observe that \(C_{2}\) satisfies AC, but fails OD with respect to \(\left\{ a,b,c,d\right\} ,\left\{ a,b,c\right\} \), and \(\left\{ a,b\right\} \).

Let \(C_{3}\left( a,b,c\right) =C_{3}\left( a,b\right) =a\), \(C_{3}\left( b,c\right) =b\), and \(C_{3}\left( a,c\right) =c\) meets OD but defys NBC. On the other hand, \(C_{4}\left( S\right) =C_{2}\left( S\right) \) for all \(S\in \mathbb {X}\backslash \left\{ \left\{ a,c\right\} \right\} \) and \(C_{4}\left( a,c\right) =a\) satisfies NBC, but violates OD.

Let \(C_{5}\left( a,b,c,d\right) =C_{5}\left( a,b,d\right) =C_{5}\left( a,c,d\right) =C_{5}\left( a,d\right) =a\), \(C_{5}\left( a,b,c\right) =C_{5}\left( b,c,d\right) =b\), \(C_{5}\left( a,b\right) =C_{5}\left( b,d\right) =b\), and \(C_{5}\left( b,c\right) =C_{5}\left( a,c\right) =C_{5}\left( c,d\right) =c\). \(C_{5}\) satisfies WW, but violates OD with respect to \(\left\{ a,b,c,d\right\} ,\left\{ a,b,c\right\} \), and \(\left\{ b,c\right\} \).

Section 3.1

Consider the following semiorders: \(P_{1}=\left\{ \left( d,b\right) ,\left( d,c\right) \right\} \), \(P_{2}=\left\{ \left( a,d\right) \right\} \), \(P_{3}=\left\{ \left( a,c\right) \right\} \), \(P_{4}=\left\{ \left( b,a\right) \right\} \), and \(P_{5}=\left\{ \left( c,b\right) \right\} \). These semiorders induce choices \(C\left( a,b,c,d\right) =a\), \(C\left( a,b,c\right) =b\), and \(C\left( b,c\right) =c\), violating OD.

Proposition 7

\(a\succ b\succ c\succ d\) and \(\mathcal {N=}\left\{ \left( b,\left\{ a,b\right\} \right) ,\left( b,\left\{ b\right\} \right) ,\left( c,\left\{ a,c\right\} \right) ,\left( c,\left\{ c\right\} \right) \right\} \) induce a choice function \(C^{\succ ,\mathcal {N}}\) that violates SH with respect to \(\left\{ a,b\right\} \) and \(\left\{ a,c\right\} \).

Proposition 9

\(C_{5}\) satisfies NBCC and violates OD.

Proposition 10

The following choice function satisfies OD but violates LCAW with respect to the set \(\left\{ a,b\right\} \): \(C\left( a,b,c,d\right) =C\left( a,c\right) =c\), \(C\left( a,b,c\right) =C\left( a,b\right) =C\left( b,c\right) =b\), \(C\left( a,c,d\right) =C\left( b,c,d\right) =C\left( a,d\right) =C\left( b,d\right) =C\left( c,d\right) =d\), and \(C\left( a,b,d\right) =a\).

The following filter \(\Gamma \) satisfies In and Ir: \(\Gamma \left( S\right) =S\) for all \(S\in \mathbb {X}\) with the exceptions \(\Gamma \left( a,b,c,d\right) =\Gamma \left( a,c,d\right) =\Gamma \left( b,c,d\right) =\left\{ c,d\right\} \), \(\Gamma \left( a,b,c\right) =\left\{ b,c\right\} \). Together with \(a\succ b\succ c\succ d\) the filter induces a choice function that violates OD with respect to \(\left\{ a,b,c,d\right\} ,\left\{ a,b,c\right\} \), and \(\left\{ a,b\right\} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutić , A. Revealed norm obedience. Soc Choice Welf 44, 301–318 (2015). https://doi.org/10.1007/s00355-014-0830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-014-0830-y

Keywords

Navigation