Abstract
We study a rational decision maker who obeys social norms. In our setup norms prescribe choices in some decision problems. The decision maker obeys norms in situations to which they apply and otherwise maximizes her preference relation. We characterize the class of choice functions that can be explained by this decision procedure, relate this procedure to other decision procedures in the literature, and engage in welfare considerations.
Similar content being viewed by others
Notes
Abusing notation, we will write \(C\left( x_{1},\dots ,x_{k}\right) \) instead of \(C\left( \left\{ x_{1},\dots ,x_{k}\right\} \right) \) for \(x_{j}\in X,\,j=1,\dots ,k\).
That is, \(\succ \) is asymmetric, transitive, and satisfies the following completeness property: \(\forall x,y\in X,x\ne y\) it holds \(x\succ y\) or \(y\succ x\).
To see the details, assume that \(X=\left\{ a,b,c\right\} \) and \(C\) is induced by the sequence of rationales \(\left( P_{i}\right) _{i\in \mathbb {N}} \). W.l.o.g. we can assume \(P_{1}\ne \varnothing \). \(C\left( a,b,c\right) =b\) implies \(\left( a,b\right) \notin P_{1}\) and \(\left( c,b\right) \notin P_{1}\). \(C\left( a,b\right) =a\) implies \(\left( b,a\right) \notin P_{1}\) and \(C\left( a,c\right) =a\) implies \(\left( c,a\right) \notin P_{1}\). Hence \(\left( a,c\right) \in P_{1}\) or \(\left( b,c\right) \in P_{1}\). Either way we have \(\gamma _{P_{1}}\left( a,b,c\right) =\gamma _{P_{1}}\left( a,b\right) \), contradicting \(C\left( a,b,c\right) \ne C\left( a,b\right) \).
Note that Cherepanov et al. (2013) actually derive In from some deeper structure modelling the use of rationalizations in decision making. However for our purposes this derivation is not of interest.
References
Baigent N, Gaertner W (1996) Never choose the uniquely largest. A characterization. Econ Theory 8:239–249
Bardsley N (2008) Dictator game giving: altruism or artefact? Exp Econ 11:122–133
Bernheim DB, Rangel A (2009) Toward choice-theoretic foundations for behavioral welfare economics. Q J Econ 124:51–104
Cherepanov V, Feddersen T, Sandroni A (2013) Rationalization. Theor Econ 8:775–800
Darley J, Latane B (1968) Bystander intervention in emergencies. Diffusion of responsibility. J Personal Soc Psychol 8:377–383
Diekmann A (1985) Volunteers dilemma. J Confl Resolut 29:605–610
Durkheim E (1997) The division of labour in society. Free Press, New York
Esser H (2001) Soziologie. Spezielle Grundlagen. Sinn und Kultur. Campus, Frankfurt am Main
Gaertner W, Xu Y (1999a) On rationalizability of choice functions: a characterization of the median. Soc Choice Welf 16:629–638
Gaertner W, Xu Y (1999b) On the structure of choice under different external references. Econ Theory 14:609–620
Gaertner W, Xu Y (1999c) Rationality and external reference. Ration Soc 11:169–185
Kroneberg C (2005) Die Definition der Situation und die variable Rationalität der Akteure. Ein allgemeines Modell des Handelns. Z fr Soziol 34:344–363
Kroneberg C, Heintze I, Mehlkop G (2010a) The interplay of moral norms and instrumental incentives in crime causation. Criminology 48:259–294
Kroneberg C, Yaish M, Stocke V (2010b) Norms and rationality in electoral participation and in the rescue of jews in WWII: an application of the model of frame selection. Ration Soc 22:3–36
Lleras J, Masatlioglu Y, Nakajima D, Ozbay E (2010) When more is less: limited consideration. Working Paper
Manzini P, Mariotti M (2007) Sequentially rationalizable choice. Am Econ Rev 97:1824–1839
Manzini P, Mariotti M (2012) Choice by lexicographic semiorders. Theor Econ 7:1–23
Masatlioglu Y, Nakajima D, Ozbay EY (2012) Revealed attention. Am Econ Rev 102:2183–2205
Masatlioglu Y, Ok EA (2005) Rational choice with status-quo bias. J Econ Theory 121:1–29
Mayerl J (2010) Die Low-Cost-Hypothese ist nicht genug. Eine empirische Überprüfung von Varianten des Modells der Frame-Selektion zur besseren Vorhersage der Einflussstärke von Einstellungen auf Verhalten. Z fr Soziol 39:28–59
Parsons T (1968) The structure of social action. Free Press, New York
Quandt M, Ohr D (2004) Worum geht es, wenn es um nichts geht? Zum Stellenwert von Niedrigkostensituationen in der Rational Choice-Modellierung normkonformen Handelns. Kölner Zeitschrift für Soziologie und Sozialpsychologie 56:683–707
Rubinstein A (1998) Modeling bounded rationality. MIT Press, Cambridge
Rubinstein A, Salant Y (2006) A model of choice from lists. Theor Econ 1:3–17
Rubinstein A, Salant Y (2012) Eliciting welfare preferences from behavioural data sets. Rev Econ Stud 79:375–387
Rubinstein A, Zhou L (1999) Choice problems with a ‘reference’ point. Math Soc Sci 37:205–209
Salant Y, Rubinstein A (2008) (A, f): choice with frames. Rev Econ Stud 75:1287–1296
Samuelson PA (1938) A note on the pure theory of consumers’ behavior. Econometrica 5:61–71
Sandbu ME (2007) Fairness and the roads not taken: an experimental test of non-reciprocal set-dependence in distributive preferences. Games Econ Behav 61:113–130
Sandroni A (2011) Akrasia, instincts, and revealed preferences. Synthese 181:1–17
Tversky A (1972) Elimination by aspects: a theory of choice. Psychol Rev 79:281–299
Weber M (1978) Economy and society, University of California Press, Berkeley
Author information
Authors and Affiliations
Corresponding author
Additional information
Thanks to Bea, who suggested the term ‘obedience’, and two referees for good advice.
Appendix
Appendix
Proposition 5
Consider the following choice function: \(C_{1}\left( a,b,c\right) =a\), \(C_{1}\left( a,b\right) =a\), and \(C_{1}\left( b,c\right) =C_{1}\left( a,c\right) =c\). \(C_{1}\) satisfies OD but not AC.
Consider \(C_{2}\left( a,b\right) =C_{2}\left( a,d\right) =a\), \(C_{2}\left( a,c\right) =C_{2}\left( c,d\right) =c\), \(C_{2}\left( b,c\right) =C_{2}\left( b,d\right) =b\). Letting \(C_{2}\left( a,b,c\right) =C_{2}\left( b,c,d\right) =b\), \(C_{2}\left( a,b,d\right) \!=\!C_{2}\left( a,b,c,d\right) =a\), and \(C_{2}\left( a,c,d\right) =c\), we observe that \(C_{2}\) satisfies AC, but fails OD with respect to \(\left\{ a,b,c,d\right\} ,\left\{ a,b,c\right\} \), and \(\left\{ a,b\right\} \).
Let \(C_{3}\left( a,b,c\right) =C_{3}\left( a,b\right) =a\), \(C_{3}\left( b,c\right) =b\), and \(C_{3}\left( a,c\right) =c\) meets OD but defys NBC. On the other hand, \(C_{4}\left( S\right) =C_{2}\left( S\right) \) for all \(S\in \mathbb {X}\backslash \left\{ \left\{ a,c\right\} \right\} \) and \(C_{4}\left( a,c\right) =a\) satisfies NBC, but violates OD.
Let \(C_{5}\left( a,b,c,d\right) =C_{5}\left( a,b,d\right) =C_{5}\left( a,c,d\right) =C_{5}\left( a,d\right) =a\), \(C_{5}\left( a,b,c\right) =C_{5}\left( b,c,d\right) =b\), \(C_{5}\left( a,b\right) =C_{5}\left( b,d\right) =b\), and \(C_{5}\left( b,c\right) =C_{5}\left( a,c\right) =C_{5}\left( c,d\right) =c\). \(C_{5}\) satisfies WW, but violates OD with respect to \(\left\{ a,b,c,d\right\} ,\left\{ a,b,c\right\} \), and \(\left\{ b,c\right\} \).
Section 3.1
Consider the following semiorders: \(P_{1}=\left\{ \left( d,b\right) ,\left( d,c\right) \right\} \), \(P_{2}=\left\{ \left( a,d\right) \right\} \), \(P_{3}=\left\{ \left( a,c\right) \right\} \), \(P_{4}=\left\{ \left( b,a\right) \right\} \), and \(P_{5}=\left\{ \left( c,b\right) \right\} \). These semiorders induce choices \(C\left( a,b,c,d\right) =a\), \(C\left( a,b,c\right) =b\), and \(C\left( b,c\right) =c\), violating OD.
Proposition 7
\(a\succ b\succ c\succ d\) and \(\mathcal {N=}\left\{ \left( b,\left\{ a,b\right\} \right) ,\left( b,\left\{ b\right\} \right) ,\left( c,\left\{ a,c\right\} \right) ,\left( c,\left\{ c\right\} \right) \right\} \) induce a choice function \(C^{\succ ,\mathcal {N}}\) that violates SH with respect to \(\left\{ a,b\right\} \) and \(\left\{ a,c\right\} \).
Proposition 9
\(C_{5}\) satisfies NBCC and violates OD.
Proposition 10
The following choice function satisfies OD but violates LCAW with respect to the set \(\left\{ a,b\right\} \): \(C\left( a,b,c,d\right) =C\left( a,c\right) =c\), \(C\left( a,b,c\right) =C\left( a,b\right) =C\left( b,c\right) =b\), \(C\left( a,c,d\right) =C\left( b,c,d\right) =C\left( a,d\right) =C\left( b,d\right) =C\left( c,d\right) =d\), and \(C\left( a,b,d\right) =a\).
The following filter \(\Gamma \) satisfies In and Ir: \(\Gamma \left( S\right) =S\) for all \(S\in \mathbb {X}\) with the exceptions \(\Gamma \left( a,b,c,d\right) =\Gamma \left( a,c,d\right) =\Gamma \left( b,c,d\right) =\left\{ c,d\right\} \), \(\Gamma \left( a,b,c\right) =\left\{ b,c\right\} \). Together with \(a\succ b\succ c\succ d\) the filter induces a choice function that violates OD with respect to \(\left\{ a,b,c,d\right\} ,\left\{ a,b,c\right\} \), and \(\left\{ a,b\right\} \).
Rights and permissions
About this article
Cite this article
Tutić , A. Revealed norm obedience. Soc Choice Welf 44, 301–318 (2015). https://doi.org/10.1007/s00355-014-0830-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00355-014-0830-y