Social Choice and Welfare

, Volume 34, Issue 4, pp 695–710 | Cite as

The family of cost monotonic and cost additive rules in minimum cost spanning tree problems

  • Gustavo Bergantiños
  • Leticia Lorenzo
  • Silvia Lorenzo-Freire
Article

Abstract

In this article, we define a new family of rules in minimum cost spanning tree problems related with Kruskal’s algorithm. We characterize this family with a cost monotonicity property and a cost additivity property.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergantiños G, Kar A (2007) Monotonicity properties and the irreducible core in minimum cost spanning tree problems. University of Vigo, MimeoGoogle Scholar
  2. Bergantiños G, Lorenzo-Freire S (2008a) Optimistic weighted Shapley rules in minimum cost spanning tree problems. Eur J Oper Res 185: 289–298CrossRefGoogle Scholar
  3. Bergantiños G, Lorenzo-Freire S (2008b) A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems. J Econ Theory 35(3): 523–538CrossRefGoogle Scholar
  4. Bergantiños G, Vidal-Puga JJ (2007) A fair rule in minimum cost spanning tree problems. J Econ Theory 137: 326–352CrossRefGoogle Scholar
  5. Bergantiños G, Vidal-Puga JJ (2009) Additivity in minimum cost spanning tree problems. J Math Econ 45: 38–42CrossRefGoogle Scholar
  6. Bird CG (1976) On cost allocation for a spanning tree: a game theoretic approach. Networks 6: 335–350CrossRefGoogle Scholar
  7. Branzei R, Moretti S, Norde H, Tijs S (2004) The P-value for cost sharing in minimum cost spanning tree situations. Theory Decis 56: 47–61CrossRefGoogle Scholar
  8. Dutta B, Kar A (2004) Cost monotonicity, consistency and minimum cost spanning tree games. Games Econ Behav 48: 223–248CrossRefGoogle Scholar
  9. Feltkamp V, Tijs S, Muto S (1994) On the irreducible core and the equal remaining obligation rule of minimum cost extension problems. Tilburg University, MimeoGoogle Scholar
  10. Kar A (2002) Axiomatization of the Shapley value on minimum cost spanning tree games. Games Econ Behav 38: 265–277CrossRefGoogle Scholar
  11. Kruskal J (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7: 48–50CrossRefGoogle Scholar
  12. Lorenzo L, Lorenzo-Freire S (2009) A characterization of kruskal sharing rules for minimum cost spanning tree problems. Int J Game Theory 38: 107–126CrossRefGoogle Scholar
  13. Norde H, Moretti S, Tijs S (2004) Minimum cost spanning tree games and population monotonic allocation schemes. Eur J Oper Res 154: 84–97CrossRefGoogle Scholar
  14. Tijs S, Branzei R, Moretti S, Norde H (2006) Obligation rules for minimum cost spanning tree situations and their monotonicity properties. Eur J Oper Res 175: 121–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gustavo Bergantiños
    • 1
  • Leticia Lorenzo
    • 1
  • Silvia Lorenzo-Freire
    • 2
  1. 1.Research Group in Economic Analysis, Facultade de Ciencias Económicas e EmpresariaisUniversidade de VigoVigoSpain
  2. 2.Departamento de Matemáticas, Facultade de InformáticaUniversidade da CoruñaA CoruñaSpain

Personalised recommendations