Advertisement

Social Choice and Welfare

, Volume 34, Issue 4, pp 695–710 | Cite as

The family of cost monotonic and cost additive rules in minimum cost spanning tree problems

  • Gustavo Bergantiños
  • Leticia Lorenzo
  • Silvia Lorenzo-Freire
Article

Abstract

In this article, we define a new family of rules in minimum cost spanning tree problems related with Kruskal’s algorithm. We characterize this family with a cost monotonicity property and a cost additivity property.

Keywords

Cost Matrix Sharing Function Axiomatic Characterization Minimum Cost Span Tree Path Independence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergantiños G, Kar A (2007) Monotonicity properties and the irreducible core in minimum cost spanning tree problems. University of Vigo, MimeoGoogle Scholar
  2. Bergantiños G, Lorenzo-Freire S (2008a) Optimistic weighted Shapley rules in minimum cost spanning tree problems. Eur J Oper Res 185: 289–298CrossRefGoogle Scholar
  3. Bergantiños G, Lorenzo-Freire S (2008b) A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems. J Econ Theory 35(3): 523–538CrossRefGoogle Scholar
  4. Bergantiños G, Vidal-Puga JJ (2007) A fair rule in minimum cost spanning tree problems. J Econ Theory 137: 326–352CrossRefGoogle Scholar
  5. Bergantiños G, Vidal-Puga JJ (2009) Additivity in minimum cost spanning tree problems. J Math Econ 45: 38–42CrossRefGoogle Scholar
  6. Bird CG (1976) On cost allocation for a spanning tree: a game theoretic approach. Networks 6: 335–350CrossRefGoogle Scholar
  7. Branzei R, Moretti S, Norde H, Tijs S (2004) The P-value for cost sharing in minimum cost spanning tree situations. Theory Decis 56: 47–61CrossRefGoogle Scholar
  8. Dutta B, Kar A (2004) Cost monotonicity, consistency and minimum cost spanning tree games. Games Econ Behav 48: 223–248CrossRefGoogle Scholar
  9. Feltkamp V, Tijs S, Muto S (1994) On the irreducible core and the equal remaining obligation rule of minimum cost extension problems. Tilburg University, MimeoGoogle Scholar
  10. Kar A (2002) Axiomatization of the Shapley value on minimum cost spanning tree games. Games Econ Behav 38: 265–277CrossRefGoogle Scholar
  11. Kruskal J (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7: 48–50CrossRefGoogle Scholar
  12. Lorenzo L, Lorenzo-Freire S (2009) A characterization of kruskal sharing rules for minimum cost spanning tree problems. Int J Game Theory 38: 107–126CrossRefGoogle Scholar
  13. Norde H, Moretti S, Tijs S (2004) Minimum cost spanning tree games and population monotonic allocation schemes. Eur J Oper Res 154: 84–97CrossRefGoogle Scholar
  14. Tijs S, Branzei R, Moretti S, Norde H (2006) Obligation rules for minimum cost spanning tree situations and their monotonicity properties. Eur J Oper Res 175: 121–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gustavo Bergantiños
    • 1
  • Leticia Lorenzo
    • 1
  • Silvia Lorenzo-Freire
    • 2
  1. 1.Research Group in Economic Analysis, Facultade de Ciencias Económicas e EmpresariaisUniversidade de VigoVigoSpain
  2. 2.Departamento de Matemáticas, Facultade de InformáticaUniversidade da CoruñaA CoruñaSpain

Personalised recommendations