Advertisement

Social Choice and Welfare

, Volume 33, Issue 3, pp 343–359 | Cite as

An extension of the Moulin No Show Paradox for voting correspondences

  • José L. Jimeno
  • Joaquín Pérez
  • Estefanía García
Original Paper

Abstract

In this article, we analyse the possibility of extending the Moulin theorem to Condorcet voting correspondences. Moulin (1988) established that every Condorcet voting function suffers from the No Show Paradox, or Abstention Paradox, which means that in some voting situations some voters would achieve a better result by abstaining (in other words, could manipulate the election by abstaining). This problem is similar to that of extending the Gibbard–Satterthwaite theorem on voting manipulation through casting an insincere ballot to voting correspondences. The main result of the paper states that for every Condorcet voting correspondence there are situations in which every optimistic or pessimistic voter with some preferences could manipulate the election by abstaining. Another result states, by counterexample, that some Condorcet voting correspondences are free from the Abstention Paradox from the point of view of other types of voters.

Keywords

Utility Function Linear Order Social Choice Function Vote Situation Extension Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barberá S, Dutta B, Sen AK (2001) Strategy-proof social choice correspondences. J Econ Theory 101: 374–394CrossRefGoogle Scholar
  2. Ching S, Zhou L (2002) Multi-valued strategy-proof social choice rules. Soc Choice Welf 19: 569–580CrossRefGoogle Scholar
  3. Duggan J, Schwartz T (2000) Strategic manipulability without resoluteness or shared beliefs: Gibbard–Satterthwaite generalized. Soc Choice Welf 17: 85–93CrossRefGoogle Scholar
  4. Fishburn PC (1977) Condorcet social choice functions. SIAM J Appl Math 33: 469–489CrossRefGoogle Scholar
  5. Fishburn PC, Brams SJ (1983) Paradoxes of preferential voting. Math Mag 56: 207–214CrossRefGoogle Scholar
  6. Gärdenfors P (1976) Manipulation of social choice functions. J Econ Theory 13: 217–228CrossRefGoogle Scholar
  7. Jimeno JL (2003) Propiedades de Participación en los métodos de agregación de preferencias. PhD thesis, Universidad de Alcalá, Madrid, EspañaGoogle Scholar
  8. Jimeno JL, Pérez J, García E (2003) Some results concerning No Show Paradoxes. XXVIII Simposio de Análisis Económico, Sevilla, EspañaGoogle Scholar
  9. Moulin H (1988) Condorcet’s Principle implies the No Show Paradox. J Econ Theory 45: 53–64CrossRefGoogle Scholar
  10. Pérez J (1995) Incidence of no-show paradoxes in Condorcet choice functions. Invest Econ XIX 1(1): 139–154Google Scholar
  11. Pérez J (2001) The strong No Show Paradoxes are a common flaw in Condorcet voting correspondences. Soc Choice Welf 18: 601–616CrossRefGoogle Scholar
  12. Taylor AD (2002) The manipulability of voting systems. Am Math Mon 109: 321–337CrossRefGoogle Scholar
  13. Taylor AD (2005) Social choice and the mathematics of manipulation. Cambridge University PressGoogle Scholar
  14. Young HP (1974) An axiomatization of Borda’s rule. J Econ Theory 9: 43–52CrossRefGoogle Scholar
  15. Young HP, Levenglick A (1978) A consistent extension of Condorcet election principle. SIAM J Appl Math 35: 285–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • José L. Jimeno
    • 1
  • Joaquín Pérez
    • 1
  • Estefanía García
    • 1
  1. 1.Departamento de Fundamentos de Economía e Historia Económica, Facultad de Ciencias Económicas y EmpresarialesUniversidad de AlcaláAlcalá de Henares, MadridSpain

Personalised recommendations