Abstract
Fed-batch culture is widely used in biopharmaceutical production owing to its superior productivity; however, optimizing feeding trajectories remains a challenge. In this study, we investigated the feasibility and benefits of using a nonlinear model predictive controller (NLMPC) for on-line reoptimization in mammalian fed-batch culture to compensate for process-model mismatch (PMM). We simulated a monoclonal antibody production process using a standard kinetic model and deliberately introduced PMM via parameter errors. The NLMPC optimized feeding trajectories for a single-feed case, in which a mixture of glucose and glutamine is fed, and for a multiple-feed case, in which glucose and glutamine are fed independently. Our results demonstrate that on-line reoptimization successfully compensates for PMM, improving the final product mass compared to off-line optimization. This study highlights the potential of on-line reoptimization using NLMPCs in mammalian fed-batch culture, which can enhance product yield even in the presence of insufficient parameter estimation.
This is a preview of subscription content, access via your institution.





Code Availability
The computer code used in this study are available at GitHub (https://github.com/kkunida/202212_Ohkubo_bioRxiv.git).
References
Komives, C., Zhou, W.: Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts. Wiley, New York (2018)
de Tremblay, M., Perrier, M., Chavarie, C., Archambault, J.: Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases. Bioprocess Eng. 7, 229–234 (1992). https://doi.org/10.1007/BF00369551
de Tremblay, M., Perrier, M., Chavarie, C., Archambault, J.: Fed-batch culture of hybridoma cells: comparison of optimal control approach and closed loop strategies. Bioprocess Eng. 9, 13–21 (1993). https://doi.org/10.1007/BF00389535
Roubos, J.A., van Straten, G., van Boxtel, A.J.B.: An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance. J. Biotechnol. 67, 173–187 (1999). https://doi.org/10.1016/s0168-1656(98)00174-6
Nguang, S.K., Chen, L., Chen, X.D.: Optimisation of fed-batch culture of hybridoma cells using genetic algorithms. ISA Trans. 40, 381–389 (2001). https://doi.org/10.1016/s0019-0578(01)00005-2
Kontoravdi, C., Asprey, S.P., Pistikopoulos, E.N., Mantalaris, A.: Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures. Biotechnol. Prog. 21, 1128–1135 (2005). https://doi.org/10.1021/bp050028k
Kontoravdi, C., Pistikopoulos, E.N., Mantalaris, A.: Systematic development of predictive mathematical models for animal cell cultures. Comput. Chem. Eng. 34, 1192–1198 (2010). https://doi.org/10.1016/j.compchemeng.2010.03.012
Kiparissides, A., Koutinas, M., Kontoravdi, C., Mantalaris, A., Pistikopoulos, E.N.: ‘Closing the loop’ in biological systems modeling—from the in silico to the in vitro. Automatica 47, 1147–1155 (2011). https://doi.org/10.1016/j.automatica.2011.01.013
Koumpouras, G., Kontoravdi, C.: Dynamic optimization of bioprocesses. Appl. Math. 3, 1487–1495 (2012). https://doi.org/10.4236/am.2012.330208
Mears, L., Stocks, S.M., Sin, G., Gernaey, K.V.: A review of control strategies for manipulating the feed rate in fed-batch fermentation processes. J. Biotechnol. 245, 34–46 (2017). https://doi.org/10.1016/j.jbiotec.2017.01.008
Sommeregger, W., Sissolak, B., Kandra, K., von Stosch, M., Mayer, M., Striedner, G.: Quality by control: towards model predictive control of mammalian cell culture bioprocesses. Biotechnol. J.. J. (2017). https://doi.org/10.1002/biot.201600546
Yee, J.C., Rehmann, M.S., Yao, G., Sowa, S.W., Aron, K.L., Tian, J., Borys, M.C., Li, Z.J.: Advances in process control strategies for mammalian fed-batch cultures. Curr. Opin. Chem. Eng. 22, 34–41 (2018). https://doi.org/10.1016/j.coche.2018.09.002
Luo, Y., Kurian, V., Ogunnaike, B.A.: Bioprocess systems analysis, modeling, estimation, and control. Curr. Opin. Chem. Eng. 33, 100705 (2021). https://doi.org/10.1016/j.coche.2021.100705
Frahm, B., Lane, P., Atzert, H., Munack, A., Hoffmann, M., Hass, V.C., Pörtner, R.: Adaptive, model-based control by the open-loop-feedback-optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol. Prog. 18, 1095–1103 (2002). https://doi.org/10.1021/bp020035y
Craven, S., Whelan, J., Glennon, B.: Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J. Process. Control. 24, 344–357 (2014). https://doi.org/10.1016/j.jprocont.2014.02.007
Schmitt, J., Downey, B., Beller, J., Russell, B., Quach, A., Lyon, D., Curran, M., Mulukutla, B.C., Chu, C.: Forecasting and control of lactate bifurcation in Chinese hamster ovary cell culture processes. Biotechnol. Bioeng. 116, 2223–2235 (2019). https://doi.org/10.1002/bit.27015
Santos, L.O., Dewasme, L., Coutinho, D., Wouwer, A.V.: Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: assessment and robustness. Comput. Chem. Eng.. Chem. Eng. 39, 143–151 (2012). https://doi.org/10.1016/j.compchemeng.2011.12.010
Amribt, Z., Dewasme, L., Vande Wouwer, A., Bogaerts, P.: Optimization and robustness analysis of hybridoma cell fed-batch cultures using the overflow metabolism model. Bioprocess Biosyst. Eng. 37, 1637–1652 (2014). https://doi.org/10.1007/s00449-014-1136-2
Dewasme, L., Fernandes, S., Amribt, Z., Santos, L.O., Bogaerts, P., Vande Wouwer, A.: State estimation and predictive control of fed-batch cultures of hybridoma cells. J. Process. Control. 30, 50–57 (2015). https://doi.org/10.1016/j.jprocont.2014.12.006
Gorrini, F., Biagiola, S., Figueroa, J.L., Wouwer, A.V.: Reaction rate estimation and model predictive control of hybridoma cell cultures. IFAC-PapersOnLine. 52, 715–720 (2019). https://doi.org/10.1016/j.ifacol.2019.06.147
Aehle, M., Bork, K., Schaepe, S., Kuprijanov, A., Horstkorte, R., Simutis, R., Lübbert, A.: Increasing batch-to-batch reproducibility of CHO-cell cultures using a model predictive control approach. Cytotechnology 64, 623–634 (2012). https://doi.org/10.1007/s10616-012-9438-1
Zupke, C., Brady, L.J., Slade, P.G., Clark, P., Caspary, R.G., Livingston, B., Taylor, L., Bigham, K., Morris, A.E., Bailey, R.W.: Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels. Biotechnol. Prog. 31, 1433–1441 (2015). https://doi.org/10.1002/btpr.2136
Teixeira, A.P., Alves, C., Alves, P.M., Carrondo, M.J.T., Oliveira, R.: Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinform. 8, 30 (2007). https://doi.org/10.1186/1471-2105-8-30
Iyer, M.S., Wunsch, D.C.: Dynamic re-optimization of a fed-batch fermentor using heuristic dynamic programming. In: Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), vol. 5, pp. 2980–2985 (1999). https://doi.org/10.1109/ACC.1999.782307.
Iyer, M.S., Wiesner, T.F., Rhinehart, R.R.: Dynamic reoptimization of a fed-batch fermentor. Biotechnol. Bioeng. 63, 10–21 (1999). https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1%3c10::AID-BIT2%3e3.0.CO;2-C
Dhir, S., Morrow, K.J., Jr., Rhinehart, R.R., Wiesner, T.: Dynamic optimization of hybridoma growth in a fed-batch bioreactor. Biotechnol. Bioeng. 67, 197–205 (2000). https://doi.org/10.1002/(SICI)1097-0290(20000120)67:2%3c197::AID-BIT9%3e3.0.CO;2-W
Mahadevan, R., Doyle, F.J., III.: On-line optimization of recombinant product in a fed-batch bioreactor. Biotechnol. Prog. 19, 639–646 (2003). https://doi.org/10.1021/bp025546z
Kotidis, P., Jedrzejewski, P., Sou, S.N., Sellick, C., Polizzi, K., Del Val, I.J., Kontoravdi, C.: Model-based optimization of antibody galactosylation in CHO cell culture. Biotechnol. Bioeng. 116, 1612–1626 (2019). https://doi.org/10.1002/bit.26960
Kotidis, P., Kontoravdi, C.: Harnessing the potential of artificial neural networks for predicting protein glycosylation. Metab Eng Commun. 10, e00131 (2020). https://doi.org/10.1016/j.mec.2020.e00131
Kotidis, P., Pappas, I., Avraamidou, S., Pistikopoulos, E.N., Kontoravdi, C., Papathanasiou, M.M.: DigiGlyc: a hybrid tool for reactive scheduling in cell culture systems. Comput. Chem. Eng. 154, 107460 (2021). https://doi.org/10.1016/j.compchemeng.2021.107460
Jedrzejewski, P.M., del Val, I.J., Constantinou, A., Dell, A., Haslam, S.M., Polizzi, K.M., Kontoravdi, C.: Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation. Int. J. Mol. Sci. 15, 4492–4522 (2014). https://doi.org/10.3390/ijms15034492
Jimenez del Val, I., Nagy, J.M., Kontoravdi, C.: A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol. Prog.. Prog. 27, 1730–1743 (2011). https://doi.org/10.1002/btpr.688
Jimenez Del Val, I., Fan, Y., Weilguny, D.: Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modelling framework. Biotechnol. J. 11, 610–623 (2016). https://doi.org/10.1002/biot.201400663
Sha, S., Huang, Z., Agarabi, C.D., Lute, S.C., Brorson, K.A., Yoon, S.: Prediction of N-linked glycoform profiles of monoclonal antibody with extracellular metabolites and two-step intracellular models. Processes 7, 227 (2019). https://doi.org/10.3390/pr7040227
Villiger, T.K., Scibona, E., Stettler, M., Broly, H., Morbidelli, M., Soos, M.: Controlling the time evolution of mAb N-linked glycosylation—part II: model-based predictions. Biotechnol. Prog.. Prog. 32, 1135–1148 (2016). https://doi.org/10.1002/btpr.2315
Bemporad, A., Lawrence Ricker, N., Morari, M.: Model Predictive Control Toolbox User’s Guide. The MathWorks Inc, Natick (2022)
Acknowledgements
We would like to thank Dr. Masaaki Nagahara from the University of Kitakyushu for helpful technical comments. We thank Editage (www.editage.com) for English language editing. This study was supported by the Next Generation Interdisciplinary Research Project of Nara Institute of Science and Technology (NAIST) and AMED under Grant Numbers JP23wm0425008.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
About this article
Cite this article
Ohkubo, T., Sakumura, Y. & Kunida, K. On-Line Reoptimization of Mammalian Fed-Batch Culture Using a Nonlinear Model Predictive Controller. New Gener. Comput. (2023). https://doi.org/10.1007/s00354-023-00235-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00354-023-00235-0