Skip to main content
Log in

An Evidence Theory-Based Approach to Handling Conflicting Temporal Data in OWL 2

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Temporal data (TD) in Semantic Web are affected by different types of imperfections principally conflict. In the literature, most of the proposed approaches deal with perfect TD. However, to our knowledge, there is no approach to dealing with conflicting TD. In this paper, we propose an approach to represent and reason about quantitative conflicting TD (i.e., time intervals and points) and associated qualitative relations (e.g., “before”). This approach is based on evidence theory and it is three folds. (i) For the representation, the mass function of the conflicting temporal data is estimated, through the believability measures estimated based on our previous DBE_ALZ approach. Then, an ontology-based representation for the handled TD associated with the obtained mass function is proposed. (ii) For the reasoning, our approach relies on the Allen’s interval relations. First, we extend this algebra to reason about conflicting temporal relations. The resulting interval relations preserve the properties of the original algebra. Second, we adapt the proposed relations to define new ones relating a time interval and a time point, and two time points. All the proposed relations can be used for temporal reasoning through transitivity tables. (iii) Based on (i) and (ii), we propose a new evidential ontology named “BeliefTimeOnto”. We implement a prototype to ease the interaction with the proposed ontology. We conduct two case studies: the first is about temporal data entered by Alzheimer’s patients in the context of a memory prosthesis and the second is about data entered the context of Collective Memory application. The evaluation proves the usefulness of the proposed approach as all the inferences are well established and the precision results are interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://cedric.cnam.fr/isid/ontologies/files/PersonLink.html.

  2. https://www.w3.org/TR/owl-time/.

  3. https://cnam-my.sharepoint.com/:b:/g/personal/nassira_achich_auditeur_lecnam_net/EQqTEHOc9SlAu4yg6AWza-oBHv5VQzagySiaQJAldOvqyg?e=gSLfle.

  4. https://cnam-my.sharepoint.com/:u:/g/personal/nassira_achich_auditeur_lecnam_net/EWWMlSSLiupIk6K50NB-GY4BxbV9AHL_Wd2UoKfNXOGGSQ?e=Cp8hjH.

References

  1. Achich, N., Ghorbel, F., Hamdi, F., Métais, E., Gargouri, F.: Representing and Reasoning About Precise and Imprecise Time Points and Intervals in Semantic Web: Dealing with Dates and Time Clocks. Springer, Cham, Linz (2019)

    Google Scholar 

  2. Achich, N., Ghorbel, F., Hamdi, F., Metais, E., & Gargouri, F.: A typology of temporal data imperfection. In 11th International Conference on Knowledge Engineering and Ontology Development (KEOD 2019) (pp. 305–311). SciTePress-Science and Technology Publications (2019)

  3. Achich, N., Ghorbel, F., Hamdi, F., Métais, E., Gargouri, F.: Approach to Reasoning about Uncertain Temporal Data in OWL 2. Elsevier-Procedia Computer Science, Verona (2020)

    Book  Google Scholar 

  4. Achich, N., Ghorbel, F., Hamdi, F., Metais, E., & Gargouri, F.: Dealing with uncertain and imprecise time intervals in OWL2: a possibility theory-based approach. In: International Conference on Research Challenges in Information Science (pp. 541–557). Springer, Cham (2021)

  5. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)

    Article  Google Scholar 

  6. Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30, 70–77 (2000)

    Article  MathSciNet  Google Scholar 

  7. Badaloni, S., Giacomin, M.: The algebra IAfuz: a framework for qualitative fuzzy temporal reasoning. Artif. Intell. 170(10), 872–908 (2006)

    Article  Google Scholar 

  8. Batsakis, S., Petrakis, E.G.M.: SOWL: A framework for handling spatio-temporal information in OWL 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds) Rule-based reasoning, programming, and applications. RuleML 2011. Lecture notes in computer science, vol 6826. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-540-44792-4_3

    Chapter  Google Scholar 

  9. Batsakis, S., Petrakis, E., Tachmazidis, E., Antoniou, G.: Temporal representation and reasoning in OWL 2. Semantic Web 8(6), 981–1000 (2017)

    Article  Google Scholar 

  10. Buneman, P., & Kostylev, E. (2010, December). Annotation algebras for RDFS. CEUR Workshop Proceedings.

  11. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. In: Yager, R.R., Liu, L. (eds) Classic works of the dempster-shafer theory of belief functions. Studies in fuzziness and soft computing, vol 219. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4_3

    Chapter  Google Scholar 

  12. Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Trans. Syst. Man Cybern. 19, 729–744 (1989)

    Article  MathSciNet  Google Scholar 

  13. Dubois, D., & Prade, H.: Théorie des possibilités. REE, 8, 42 (2006)

  14. Ermolayev, V., Jentzsch, E., Karsayev, O., Keberle, N., Matzke, W. E., Samoylov, V., & Sohnius, R.: An agent-oriented model of a dynamic engineering design process. In: International bi-conference workshop on agent-oriented information systems (pp. 168–183). Springer, Berlin, Heidelberg (2005)

  15. Gammoudi, A., Hadjali, A., Yaghlane , B.: Fuzz-TIME: an intelligent system for managing fuzzy temporal information. Intell. Comput. Cybern., 200–222 (2017)

  16. Ghorbel, F., Hamdi, F., Achich, N., Métais, E., Gargouri, F.: Handling data imperfection–False data inputs in applications for Alzheimer’s patients. DataKnowl. Eng. 130, 101864 (2020)

    Google Scholar 

  17. Ghrobel, F., Hamdi, F., Métais, E., Ellouze, N., Gargouri, F.: A fuzzy-based approach for representing and reasoning on imprecise time intervals in fuzzy-OWL 2 ontology. International Conference on Applications of Natural Language to Information Systems (pp. 167–178). Paris: Springer, Cham (2018)

  18. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: European Semantic Web Conference (ESWC’05) (pp. 93–107). Springer (2005)

  19. Harbelot, B., Arenas, H., Cruz, C.: Continuum: a spatiotemporal data model to represent and qualify filiation relationships. In: ACM SIGSPATIAL International Workshop on GeoStreaming, (pp. 76–85) (2013)

  20. Herradi, N., Hamdi, F., Métais, E., & Soukane, A.: PersonLink: A Multilingual and Multicultural Ontology Representing Family Relationships. In KEOD (pp. 147–154) (2015)

  21. Herradi, N., Hamdi, F., Métais, E.: A semantic representation of time intervals in OWL2. In: KEOD 2017, (pp. 1–8). Madeira, Portugal (2017)

  22. Hurtado, C., Vaisman, A.: Reasoning with Temporal Constraints in RDF. Principles and Practice of Semantic Web Reasoning, (pp. 164–178) (2006)

  23. Kim, S.-K., Song, M.-Y., Kim, C., Yea, S.-J., Jang, H., Lee, K.-C.: Temporal ontology language for representing and reasoning interval-based temporal knowledge. In: 3rd Asian Semantic Web Conference on the Semantic Web. (pp. 31–45). 5367 (2008)

  24. Klein, M., Fensel, D.: Ontology versioning on the semantic web. In: Semantic Web Working Symposium, Stanford University, (pp. 75–91). California (2001)

  25. Lutz, C.: Description logics with concrete domains. A survey. Adv. Modal Log., 265–296 (2003)

  26. Métais, E., Ghorbel, F., Herradi, N., Hamdi, F., Lammari, N., Nakache, D., soukane, A.: Memory prosthesis. Non-pharmacol. Ther. Dementia 3(2), 177 (2012)

    Google Scholar 

  27. Nagypál, G., Motik, B.: A Fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. In: OTM confederated international conferences “On the Move to Meaningful Internet Systems” (pp. 906–923). Springer (2003)

  28. Noy, N., Rector, A., Hayes, P., & Welty, C.: Defining n-ary relations on the semantic web. W3C working group note, 12(4) (2006)

  29. O’Connor, M.J., Das, A.K.: A method for representing and querying temporal information in OWL. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2010. Communications in Computer and Information Science, vol 127. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18472-7_8

    Chapter  Google Scholar 

  30. Sadeghi, K., Goertzel, B.: Uncertain interval algebra via fuzzy/probabilistic modeling. In: IEEE International Conference on Fuzzy Systems, (pp. 591–598) (2014)

  31. Schockaert, S.: Temporal reasoning about fuzzy intervals. Artif. Intell. 175, 1158–1193 (2008)

    Article  MathSciNet  Google Scholar 

  32. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, New Jersey (1976)

    Book  Google Scholar 

  33. Shafer, G.: The combination of evidence. Int. J. Intell. Syst. 1, 155–179 (1986)

    Article  Google Scholar 

  34. Sta, H.: Quality and the efficiency of data in “Smart-Cities. Future Gener. Comput. Syst. 74, 409–416 (2017)

    Article  Google Scholar 

  35. Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: European semantic web conference (pp. 308–322). Springer (2009)

  36. Welty, C., Fikes, R., & Makarios, S.: A reusable ontology for fluents in OWL. In FOIS (Vol. 150, pp. 226-236) (2006)

  37. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassira Achich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achich, N., Ghorbel, F., Bouhamed, S.A. et al. An Evidence Theory-Based Approach to Handling Conflicting Temporal Data in OWL 2. New Gener. Comput. 40, 845–870 (2022). https://doi.org/10.1007/s00354-022-00187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-022-00187-x

Keywords

Navigation