Skip to main content
Log in

Replication of Arbitrary Hole-Free Shapes via Self-assembly with Signal-Passing Tiles

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the abilities of systems of self-assembling tiles which can each pass a constant number of signals to their immediate neighbors to create replicas of input shapes. Namely, we work within the Signal-passing Tile Assembly Model (STAM), and we provide a universal STAM tile set which is capable of creating unbounded numbers of assemblies of shapes identical to those of input assemblies. The shapes of the input assemblies can be arbitrary 2-dimensional hole-free shapes. This improves previous shape replication results in self-assembly that required models in which multiple assembly stages and/or bins were required, and the shapes which could be replicated were more constrained, as well as a previous version of this result that required input shapes to be represented at scale factor 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  1. Abel, Z., Benbernou, N., Damian, M., Demaine, E., Demaine, M., Flatland, R., Kominers, S., Schweller, R.: Shape replication through self-assembly and RNase enzymes. In: SODA 2010: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, Texas), Society for Industrial and Applied Mathematics (2010)

  2. Alseth, A., Hader, D., Patitz, M.J.: Self-replication via tile self-assembly (extended abstract). In: 27th International Conference on DNA Computing and Molecular Programming (DNA 27) (Dagstuhl, Germany) (Lakin, Matthew R., Petr Šulc, eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 205, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 3:1–3:22 (2021)

  3. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  4. Chalk, C., Demaine, E.D., Demaine, M.L., Martinez, E., Schweller, R., Vega, Luis, W.T.: Universal shape replicators via Self-Assembly with Attractive and Repulsive Forces. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, January, pp. 225–238 (2017)

  5. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T.: and Pablo Moisset de Espanés, Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)

    Article  MathSciNet  Google Scholar 

  6. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, Robert T., Souvaine, Diane L.: Staged self-assembly: nanomanufacture of arbitrary shapes with \({O}(1)\) glues. Natl. Comput. 7(3), 347–370 (2008)

    Article  MathSciNet  Google Scholar 

  7. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 302–310 (2012)

  8. Evans, C.G.: Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology (2014)

  9. Fochtman, T., Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal transmission across tile assemblies: 3d static tiles simulate active self-assembly by 2d signal-passing tiles. Natl. Comput. 14(2), 251–264 (2015)

    Article  MathSciNet  Google Scholar 

  10. Keenan, A., Schweller, R.T., Zhong, X.: Exponential replication of patterns in the signal tile assembly model. DNA (Soloveichik, David, Yurke, Bernard eds.), Lecture Notes in Computer Science, vol. 8141, Springer, pp. 118–132 (2013)

  11. Keenan, A., Schweller, R., Zhong, X.: Exponential replication of patterns in the signal tile assembly model. Natl. Comput. 14(2), 265–278 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and complexity in self-assembly. Theory Comput. Syst. 48(3), 617–647 (2011)

    Article  MathSciNet  Google Scholar 

  13. Matthew, J.P., Summers, S.M.: Self-assembly of decidable sets. Natl. Comput. 10(2), 853–877 (2011)

    Article  MathSciNet  Google Scholar 

  14. Padilla, J.E., Patitz, M.J., Schweller, R.T., Seeman, N.C., Summers, S.M., Zhong, Xingsi: Asynchronous signal passing for tile self-assembly: fuel efficient computation and efficient assembly of shapes. Int. J. Found. Comput. Sci. 25(4), 459–488 (2014)

    Article  MathSciNet  Google Scholar 

  15. Patitz, M.J., Summers, S.M.: Identifying shapes using self-assembly. Algorithmica 64(3), 481–510 (2012)

    Article  MathSciNet  Google Scholar 

  16. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract), STOC ’00: Proceedings of the thirty-second annual ACM Symposium on Theory of Computing (Portland, Oregon, United States), ACM, pp. 459–468 (2000)

  17. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl. Acad. Sci. USA 109(17), 6405–10 (2012)

    Article  Google Scholar 

  18. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)

    Article  MathSciNet  Google Scholar 

  19. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology (1998)

  20. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, Peng, Winfree, Erik: Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Alseth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This author’s work was supported in part by National Science Foundation Grant CAREER-1553166

This author’s research was supported in part by National Science Foundation grants CCF-1422152 and CAREER-1553166

Research supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 772766, Active-DNA project), and Science Foundation Ireland (SFI) under Grant number 15/ERCS/5746.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alseth, A., Hendricks, J., Patitz, M.J. et al. Replication of Arbitrary Hole-Free Shapes via Self-assembly with Signal-Passing Tiles. New Gener. Comput. 40, 553–601 (2022). https://doi.org/10.1007/s00354-022-00181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-022-00181-3

Keywords

Navigation