Parallel Interaction Detection Algorithms for a Particle-based Live Controlled Real-time Microtubule Gliding Simulation System Accelerated by GPGPU

Abstract

Real-time simulations have been getting more attention in the field of self-organizing molecular pattern formation such as a microtubule gliding assay. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics in silico, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation parameters in a real-time fashion. For the recreation of microtubule dynamics our model proposes the use of the Lennard-Jones potential for our particle-based simulation, as well as a flocking algorithm for self-organization. One of the technical challenges when creating a real-time 3D simulation is computational scalability performance, as well as balancing the 3D rendering and computing work flows. GPU programming plays an essential role in executing the millions of tasks necessary for microtubule interaction detection and makes this real-time 3D simulation possible. However, an excess number of tasks sometimes causes a memory bottleneck which prevents performance scalability when using GPGPU processing. In order to alleviate the memory bottleneck, we propose a new parallel interaction detection algorithm that uses warp level optimizations for the two memory bound interactions discussed in this paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Bdorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational n-body code that runs entirely on the gpu processor. J. Comput. Phys. 231(7), 2825–2839 (2012). doi:10.1016/j.jcp.2011.12.024

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Green, S.: Particle simulation using cuda—nvidia documentation (2012). http://docs.nvidia.com/cuda/samples/5_simulations/particles/doc/particles.pdf

  3. 3.

    Gutmann, G., Inoue, D., Kakugo, A., Konagaya, A.: Real-time 3d microtubule gliding simulation. Commun. Comput. Inf. Sci. Life Syst. Model. Simul. 13–22 (2014). doi:10.1007/978-3-662-45283-7

  4. 4.

    Gutmann, G., Inoue, D., Kakugo, A., Konagaya, A.: Real-time 3d microtubule gliding simulation accelerated by gpu computing. Int. J. Autom. Comput. 13(2), 108116 (2016). doi:10.1007/s11633-015-0947-1

    Article  Google Scholar 

  5. 5.

    Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., Murata, S.: Molecular robots with sensors and intelligence. Acc. Chem. Res. 47(6), 1681–1690 (2014). doi:10.1021/ar400318d

    Article  Google Scholar 

  6. 6.

    Hess, H., Clemmens, J., Brunner, C., Doot, R., Luna, S., Ernst, K.H., Vogel, V.: Molecular self-assembly of nanowires and nanospools using active transport. Nano Lett. 5(4), 629–633 (2005). doi:10.1021/nl0478427

  7. 7.

    Horio, T., Murata, T.: The role of dynamic instability in microtubule organization. Front. Plant Sci. 5 (2014). doi:10.3389/fpls.2014.00511

  8. 8.

    Inoue, D., Kabir, A.M.R., Mayama, H., Gong, J.P., Sada, K., Kakugo, A.: Growth of ring-shaped microtubule assemblies through stepwise active self-organisation. Soft Matter 9(29), 7061 (2013). doi:10.1039/c3sm50704a

    Article  Google Scholar 

  9. 9.

    Inoue, D., Mahmot, B., Kabir, A.M.R., Farhana, T.I., Tokuraku, K., Sada, K., Konagaya, A., Kakugo, A.: Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7(43), 18,054–18,061 (2015). doi:10.1039/c5nr02213d

    Article  Google Scholar 

  10. 10.

    Kabir, A.M.R., Wada, S., Inoue, D., Tamura, Y., Kajihara, T., Mayama, H., Sada, K., Kakugo, A., Gong, J.P.: Formation of ring-shaped assembly of microtubules with a narrow size distribution at an airbuffer interface. Soft Matter 8(42):10,863 (2012). doi:10.1039/c2sm26441b

  11. 11.

    Kong, K.Y., Marcus, A.I., Giannakakou, P., Alberti, C., Wang, M.D.: A two dimensional simulation of microtubule dynamics. In: 2008 International conference on technology and applications in biomedicine (2008). doi:10.1109/itab.2008.4570630

  12. 12.

    Kraikivski, P., Lipowsky, R., Kierfeld, J.: Enhanced ordering of interacting filaments by molecular motors. Phys. Rev. Lett. 96(25) (2006). doi:10.1103/physrevlett.96.258103

  13. 13.

    Kudrolli, A., Lumay, G., Volfson, D., Tsimring, L.S.: Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100(5) (2008). doi:10.1103/physrevlett.100.058001

  14. 14.

    Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Gener. Comput. 31(1), 2745 (2013). doi:10.1007/s00354-012-0121-z

    Article  Google Scholar 

  15. 15.

    Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Addison-Wesley, Boston (2005)

    Google Scholar 

  16. 16.

    Sumino, Y., Nagai, K.H., Shitaka, Y., Tanaka, D., Yoshikawa, K., Chat, H., Oiwa, K.: Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483(7390), 44852 (2012). doi:10.1038/nature10874

    Article  Google Scholar 

  17. 17.

    Vicsek, T., Czirk, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 12261229 (1995). doi:10.1103/physrevlett.75.1226

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wells, D.B., Aksimentiev, A.: Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. Biophys. J. 99(2), 629637 (2010). doi:10.1016/j.bpj.2010.04.038

    Article  Google Scholar 

  19. 19.

    Wolfe, M.: Understanding the cuda data parallel threading model (2010). http://www.pgroup.com/lit/articles/insider/v2n1a5.htm

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovation Areas Molecular Robotics (No. 24104004) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory Gutmann.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutmann, G., Inoue, D., Kakugo, A. et al. Parallel Interaction Detection Algorithms for a Particle-based Live Controlled Real-time Microtubule Gliding Simulation System Accelerated by GPGPU. New Gener. Comput. 35, 157–180 (2017). https://doi.org/10.1007/s00354-017-0011-5

Download citation

Keywords

  • CUDA
  • DirectX
  • GPGPU
  • Microtubule gliding assay
  • Real-time
  • 3D simulation
  • Live control
  • Lennard-Jones potential
  • Threading