New Generation Computing

, Volume 35, Issue 2, pp 129–156 | Cite as

An Asynchronous Double Auction Market to Study the Formation of Financial Bubbles and Crashes

  • Sadek Benhammada
  • Frédéric Amblard
  • Salim Chikhi
Research Paper

Abstract

Stock market is a complex system composed from heterogeneous traders with highly non-linear interactions from which emerge a phenomenon of speculative bubble. To understand the role of heterogeneous behaviors of traders and interactions between them in the emergence of bubbles, we propose an agent-based model of double auction market, with asynchronous time management, where traders act asynchronously and take different times to make decisions. The market is populated by heterogeneous traders. In addition to fundamentalist, noise, and technical (chartist) traders, we propose a hybrid trader, which can switch between technical (chartist) and fundamentalist strategies integrating panicking behavior. We find that when market is populated by a majority of hybrid traders, we observe quite realistic bubble formation characterized by a boom phase when hybrid traders switch to technical behavior, followed by a relatively shorter burst phase when hybrid traders return to fundamentalist strategy and change to panicked state. The aim is to design agents which act asynchronously, with simple behaviors, but complex enough to produce realistic price dynamics, which provide a basis for developing agents with sophisticated decision-making processes.

Keywords

Artificial stock market Multi-agent simulation Agent-based computational economic 

References

  1. 1.
    Amblard, F., Phan, D.: Modélisation et simulation multi-agents. Hermes Lavoisier, Paris (2006)Google Scholar
  2. 2.
    Arthur, W.B., Holland, J.H., LeBaron, B., Palmer, R.G., Tayler, P.: Asset pricing under endogenous expectations in an artificial stock market. SSRN 2252 (1996)Google Scholar
  3. 3.
    Barlevy, G.: Economic theory and asset bubbles. Econ. Perspect. 31(3) (2007)Google Scholar
  4. 4.
    Bernanke, B.S.: The Federal Reserve and the financial crisis. Princeton University Press (2013)Google Scholar
  5. 5.
    Bessembinder, H., Venkataraman, K.: Bid-ask spreads: measuring trade execution costs in financial markets. Encycl. Quant. Finance (2009)Google Scholar
  6. 6.
    Blanchard, O.J., Watson, M.W.: Bubbles, rational expectations and financial markets (1982)Google Scholar
  7. 7.
    Boer, K., Kaymak, U., Spiering, J.: From discrete-time models to continuous-time, asynchronous modeling of financial markets. Comput. Intell. 23(2), 142–161 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boer-Sorban, K.: Agent-based simulation of financial markets: a modular, continuous-time approach. Number EPS-2008-119-LIS. Erasmus Research Institute of Management (ERIM) (2008)Google Scholar
  9. 9.
    Chacko, G., Jurek, J.W., Stafford, E.: Pricing liquidity: the quantity structure of immediacy prices. Division of Research, Harvard Business School (2006)Google Scholar
  10. 10.
    Chen, S.-H., Chang, C.-L., Du, Y.-R.: Agent-based economic models and econometrics. Knowl. Eng. Rev. 27(02), 187–219 (2012)CrossRefGoogle Scholar
  11. 11.
    Cui, B., Wang, H., Ye, K., Yan, J.: Intelligent agent-assisted adaptive order simulation system in the artificial stock market. Expert Syst. Appl. 39(10), 8890–8898 (2012)CrossRefGoogle Scholar
  12. 12.
    Deck, C., Porter, D., Smith, V.: Double bubbles in assets markets with multiple generations. J. Behav. Finance 15(2), 79–88 (2014)CrossRefGoogle Scholar
  13. 13.
    Derveeuw, J.: Market dynamics and agents behaviors: a computational approach. In: Artificial Economics, pp. 15–26. Springer (2006)Google Scholar
  14. 14.
    Derveeuw, J., Beaufils, B., Mathieu, P., and Brandouy, O.: Testing double auction as a component within a generic market model architecture. In: Artificial Markets Modeling, pp. 47–61. Springer (2007)Google Scholar
  15. 15.
    Diba, B.T., Grossman, H.I.: Rational inflationary bubbles. J. Monet. Econ. 21(1), 35–46 (1988)CrossRefGoogle Scholar
  16. 16.
    Fama, E.F.: Efficient capital markets: a review of theory and empirical work. J Finance 25(2), 383–417 (1970)CrossRefGoogle Scholar
  17. 17.
    Frankel, J.A., Froot, K.: Chartists, fundamentalists and the demand for dollars. NBER Working Paper, (R1655) (1991)Google Scholar
  18. 18.
    Füllbrunn, S., Neugebauer, T.: Margin trading bans in experimental asset markets. Technical report, Jena Economic Research Papers (2012)Google Scholar
  19. 19.
    Giardina, I., Bouchaud, J.-P.: Bubbles, crashes and intermittency in agent based market models. Eur. Phys. J. B Condens. Matter Complex Syst. 31(3), 421–437 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gravereau, J., Trauman, J.: Crises financières. Economica (2001)Google Scholar
  21. 21.
    Haruvy, E., Noussair, C.N.: The effect of short selling on bubbles and crashes in experimental spot asset markets. J. Finance 61(3), 1119–1157 (2006)CrossRefGoogle Scholar
  22. 22.
    Izumi, K., Okatsu, T.: An artificial market analysis of exchange rate dynamics. In: Evolutionary Programming, pp. 27–36. Citeseer (1996)Google Scholar
  23. 23.
    Kaldor, N.: Speculation and economic stability. Rev. Econ. Stud. 7(1), 1–27 (1939)CrossRefGoogle Scholar
  24. 24.
    Karino, Y., Kawagoe, T.: Bubble and crash in the artificial financial market. In: Artificial Economics, pp. 159–170. Springer (2009)Google Scholar
  25. 25.
    Kindleberger, C.P., Aliber, R.Z.: Manias, panics and crashes: a history of financial crises. Palgrave Macmillan (2011)Google Scholar
  26. 26.
    Kobayashi, S., Hashimoto, T.: Analysis of random agents for improving market liquidity using ar-tificial stock market. In: Proceedings of The Fourth Conference of The European Social Simulation Association (ESSA 4th07), pp. 315–317 (2007)Google Scholar
  27. 27.
    Kumar, P., Amritha, T., Gowtham Ram, S., Hari Krishna, S., Karthika, M., Mohandas, V.: A survey of agent based artificial stock markets (continuous session models). Int. Res. J. Finance Econ. 64, 126–139 (2011)Google Scholar
  28. 28.
    Kumar, P., Jha, A., Gautham, T., Mohan, J., Rama Subramanian, A., Mohandas, V.: A survey of call market (discrete) agent based artificial stock markets. Int. J. Comput. Sci. Eng. 2(09), 3025–3032 (2010)Google Scholar
  29. 29.
    Lugovskyy, V., Puzzello, D., Tucker, S., Williams, A.: Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. 107, 781–797 (2014)CrossRefGoogle Scholar
  30. 30.
    Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397(6719), 498–500 (1999)CrossRefGoogle Scholar
  31. 31.
    Martinez, S., Tsang, E.P.: An heterogeneous, endogenous and coevolutionary gp-based financial market. Evol. Comput. IEEE Trans. 13(1), 33–55 (2009)CrossRefGoogle Scholar
  32. 32.
    Mizuta, T., Izumi, K., Yoshimura, S.: Price variation limits and financial market bubbles: artificial market simulations with agents’ learning process. In: Computational Intelligence for Financial Engineering & Economics (CIFEr), 2013 IEEE Conference, pp. 1–7. IEEE (2013)Google Scholar
  33. 33.
    Mizuta, T., Kosugi, S., Kusumoto, T., Matsumoto, W., Izumi, K., Yagi, I., Yoshimura, S.: Effects of price regulations and dark pools on financial market stability: an investigation by multiagent simulations. Intell. Syst. Account. Finance Manag. (2015)Google Scholar
  34. 34.
    Muchnik, L., Solomon, S.: Markov nets and the netlab platform: application to continuous double auction. In: Complexity hints for economic policy, pp. 157–180. Springer (2007)Google Scholar
  35. 35.
    Orléan, A.: L’auto-référence dans la théorie keynésienne de la spéculation. Cahiers d’économie politique/Papers in Political Economy, pp. 229–242 (1988)Google Scholar
  36. 36.
    Palmer, R.G., Arthur, W.B., Holland, J.H., LeBaron, B., Tayler, P.: Artificial economic life: a simple model of a stockmarket. Phys. D Nonlinear Phenom. 75(1), 264–274 (1994)CrossRefMATHGoogle Scholar
  37. 37.
    Sewell, M.: Characterization of financial time series. Research Note. University College London (2011)Google Scholar
  38. 38.
    Smith, V.L., Suchanek, G.L., Williams, A.W.: Bubbles, crashes, and endogenous expectations in experimental spot asset markets. Econometrica, pp. 1119–1151 (1988)Google Scholar
  39. 39.
    Stöckl, T., Huber, J., Kirchler, M.: Bubble measures in experimental asset markets. Exp. Econ. 13(3), 284–298 (2010)CrossRefMATHGoogle Scholar
  40. 40.
    Tan, J.P., David, M.: Study of property market in johor: an investigation of property bubble phenomenon (2012)Google Scholar
  41. 41.
    Thurner, S., Farmer, J.D., Geanakoplos, J.: Leverage causes fat tails and clustered volatility. Quant. Finance 12(5), 695–707 (2012)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Vigfusson, R.: Switching between chartists and fundamentalists: a markov regime-switching approach (1996)Google Scholar
  43. 43.
    Wang, P., Wen, Y.: Speculative bubbles and financial crises. Am. Econ. J. Macroecon. 4(3), 184–221 (2012)CrossRefGoogle Scholar
  44. 44.
    Westerhoff, F.H.: The use of agent-based financial market models to test the effectiveness of regulatory policies. Jahrbücher für Nationalökonomie und Statistik, pp. 195–227 (2008)Google Scholar
  45. 45.
    Zovko, I.I.: Topics in market microstructure. Amsterdam University Press (2008)Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer Japan 2017

Authors and Affiliations

  • Sadek Benhammada
    • 1
  • Frédéric Amblard
    • 2
  • Salim Chikhi
    • 1
  1. 1.MISC Laboratory, Computer Science DepartmentUniversity of Constantine 2ConstantineAlgeria
  2. 2.UMR 5505 CNRS-IRIT, Universit Toulouse 1 CapitoleToulouseFrance

Personalised recommendations