Swarm Networks in Brownian Environments


Swarm Networks are a generalization of Cellular Automata, in which the neighborhoods and functionalities of cells are determined by the presence or absence of connections between cells. This paper presents a Swarm Network in which connections can be changed dynamically, and in which the cells (called “agents”) are subject to Brownian motion. According to these characteristics, the model mimics behavior typically encountered in biological organisms. We show that this model is capable of universal computation by constructing a universal Brownian circuit based on it.

This is a preview of subscription content, log in to check access.


  1. 1.

    Mori, M., Isokawa, T., Peper, F., Matsui, N., “On Swam Networks in Brownian Environments,” in Proc. of the 2nd International Symposium on Computing and Networking (AFCA’14-CANDAR’14), pp. 495–498, 2014.

  2. 2.

    Neumann, J. v., Theory of Self-Reproducing Automata, University of Illinois Press, Champaign, IL, USA, 1966.

  3. 3.

    Banks, E. R., “Universality in cellular automata,” in IEEE 11th Ann. Symp. on Switching and Automata Theory, pp. 194–215, 1970.

  4. 4.

    Codd, E. F., Cellular Automata, Academic Press, Orlando, FL, USA, 1968.

  5. 5.

    Turing A.M.: “On computable numbers, with an application to the entscheidungsproblem,”. Proc. London Math. Soc. 2(42), 230–265 (1936)

    MathSciNet  Google Scholar 

  6. 6.

    Murata S., Konagaya A., Kobayashi S., Hagiya M.: “Molecular Robotics: A New Paradigm for Artifacts,”. New Generation Computing 31(1), 27–45 (2013)

    Article  Google Scholar 

  7. 7.

    Akyildiz I. F., Su W., Sankarasubramaniam Y., Cayirci. E.: “A Survey on Sensor Networks,”. IEEE Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  8. 8.

    Chang, T. M. S., Artificial Cells: Biotechnology, Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation, Cell/Stem Cell Therapy, World Scientific Publishing, 2007.

  9. 9.

    Isokawa, T., Peper, F., Mitsui, M., Liu, J-Q, Morita, K., Umeo, H., Kamiura, N. and Matsui, N., “Computing by Swam Networks,” in Proc. of 8th International Conference on Cellular Automata for Research and Industry (ACRI2008), pp. 50–59, 2008.

  10. 10.

    Lee, J. and Peper, F., “On Brownian cellular automata,” in Proc. of Automata 2008, pp. 278–291, 2008.

  11. 11.

    Peper, F., Lee, J., Carmona, J., Cortadella, J. and Morita, K., “Brownian circuits: Fundamentals,” ACM Journal on Emerging Technologies in Computing Systems, 9, 1, Article No.:3, pp. 1–24, 2013.

  12. 12.

    Sutherland I.E.: “Micropipelines,”. Communications of the ACM 32(6), 720–738 (1989)

    Article  Google Scholar 

  13. 13.

    Handshake Protocols (Sparsø, J. and Furber, S. eds.), chapter 2.1, Kluwer Academic Publishers, Netherlands, 2001.

  14. 14.

    Lee J., Imai K., Zhu Q-s.: “Fluctuation-driven computing on number-conserving cellular automata,”. Information Sciences, 187, 266–276 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Pease A. R., Jeppesen J. O., Stoddart J. F., Luo Y., Collier C. P., Heath J. R.: “Switching Devices Based on Interlocked Molecules,”. Accounts of Chemical Research 34(6), 433–444 (2001)

    Article  Google Scholar 

  16. 16.

    Tsujioka T., Kondo H.: “Organic bistable molecular memory using photochromic diarylethene,”. Applied Physics Letters 83(5), 937–939 (2008)

    Article  Google Scholar 

  17. 17.

    Rogez G., Ribera B.F., Credi A., Ballardini R., Gandolfi M.T., Balzani V., Liu Y., Northrop B.H., Stoddart J.F.: “A Molecular Plug–Socket Connector,”. Journal of the Americal Chemical Society 129(15), 4633–4642 (2007)

Download references

Author information



Corresponding author

Correspondence to Teijiro Isokawa.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mori, M., Isokawa, T., Peper, F. et al. Swarm Networks in Brownian Environments. New Gener. Comput. 33, 297–318 (2015). https://doi.org/10.1007/s00354-015-0303-6

Download citation


  • Swarm Network
  • Turing Machine
  • Brownian Motion
  • Delay-insensitive Circuit