Molecular Robotics: A New Paradigm for Artifacts


The rapid progress of molecular nanotechnology has opened the door to molecular robotics, which uses molecules as robot components. In order to promote this new paradigm, the Molecular Robotics Research Group was established in the Systems and Information Division of the Society of Instrument and Control Engineers (SICE) in 2010. The group consists of researchers from various fields including chemistry, biophysics, DNA nanotechnology, systems science and robotics, challenging this emerging new field. Last year, the group proposed a research project focusing on molecular robotics, and it was recently awarded a Grant-in-Aid for Scientific Research on Innovative Areas (FY2012-16), one of the large-scale research projects in Japan, by MEXT (Ministry of Education, Culture, Sports, Science and Technology, JAPAN). Here, we wish to clarify the fundamental concept and research direction of molecular robotics. For this purpose, we present a comprehensive view of molecular robotics based on the discussions held in the Molecular Robotics Research Group.


  1. 1.

  2. 2.

    Schrödinger, E., What is life? Mind and Matter, Cambridge University Press, 1944.

  3. 3.

    Murata, S., Kurokawa, H., Self-organizing Robots, Springer, 2012.

  4. 4.

    Wiener, N., Cybernetics, or Communication and Control in the Animal and the Machine, MIT Press, 1948.

  5. 5.

    Lund et al.: “Molecular robots guided by prescriptive landscapes,”. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  6. 6.

    Kallenbach N., Ma R., Seeman N.: “An immobile nucleic acid junction constructed from origonucleotides,”. Nature 305, 829–831 (1983)

    Article  Google Scholar 

  7. 7.

    Winfree E., Liu F., Wenzler L., Seeman N.: “Design and self-assembly of two-dimensional DNA crystals,”. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  8. 8.

    Yan H., Park S. H., Finkelstein G., Reif J., LaBean T.: “DNA-Templated Self-assembly of Protein Arrays and Highly Conductive Nanowires,”. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

  9. 9.

    He Y., Chen Y., Liu H., Ribbe A., Mao C.: “Self-assembly of Hexagonal DNA Two-Dimensional (2D) Arrays,”. Journal of the American Chemical Society 127(35), 12202–12203 (2005)

    Article  Google Scholar 

  10. 10.

    Hamada S., Murata S.: “Substrate-Assisted Assembly of Interconnected Single- Duplex DNA Nanostructures,”. Angew. Chem. Int. Ed. 48, 6820–6823 (2009)

    Article  Google Scholar 

  11. 11.

    Rothemund P.: “Folding DNA to Create Nanoscale Shapes and Patterns,”. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  12. 12.

    Andersen E. et al.: “Self-assembly of a Nanoscale DNA Box with a Controllable Lid,”. Nature 459(7243), 73–76 (2009)

    Article  Google Scholar 

  13. 13.

    Douglas S., Dietz H., Liedl T., Hogberg B., Graf F., Shih W.: “Self-assembly of DNA into Nanoscale Three-dimensional Shapes,”. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  14. 14.

    Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y., Komiyama, M., “Nanomechanical DNA Origami as “Single-Molecule Beacons,” Directly Imaged by Atomic Force Microscopy, Nature Commun., 2, 449, 2011.

  15. 15.

    Endo M., Katsuda Y., Hidaka K., Sugiyama H.: “Regulation of DNA Methylation Using Different Tensions of Double Strands Constructed in a Defined DNA Nanostructure,”. J. Am. Chem. Soc. 132, 1592–1597 (2010)

    Article  Google Scholar 

  16. 16.

    Adleman L.: “Molecular Computation of Solutions to Combinatorial Problems,”. Science 266(5178), 1021–1024 (1994)

    Article  Google Scholar 

  17. 17.

    Benenson Y., Gil B., Ben-Dor U., Adar R., Shapiro E.: “An Autonomous Molecular Computer for Logical Control of Gene Expression,”. Nature 429(6990), 423–429 (2004)

    Article  Google Scholar 

  18. 18.

    Sakamoto K., Kiga D., Komiya K., Gouzu H., Yokoyama S., Ikeda S., Sugiyama H., Hagiya M.: “State Transitions by Molecules,”. Biosystems 52(1–3), 81–91 (1999)

    Article  Google Scholar 

  19. 19.

    Komiya K., Yamamura M., Rose J. A.: “Experimental validation and optimization of signal dependent operation in wiplash PCR,”. Natural Computing 9(1), 207–208 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Takinoue M., Suyama A.: “Hairpin-DNA Memory Using Molecular Addressing,”. Small 2, 1244–1247 (2006)

    Article  Google Scholar 

  21. 21.

    Stojanovic M., Stefanovic D.: “A Deoxyribozyme-based Molecular Automaton,”. Nature Biotechnology 21(9), 1069–1074 (2003)

    Article  Google Scholar 

  22. 22.

    Seelig G., Soloveichik D., Zang D., Winfree E.: “Enzyme-Free Nucleic Acid Logic Circuits,”. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  23. 23.

    Zhang D., Turberfield A., Yurke B., Winfree E.: “Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA,”. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  24. 24.

    Qian L., Winfree E.: “Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades,”. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  25. 25.

    Montagnue, K. et al., “Programming an in vitro DNA oscillator using a molecular networking strategy,” Molecular Systems Biology, 7, 466, published online, 2011.

  26. 26.

    Chworos A. et al.: “Building Programmable Jigsaw Puzzle with RNA,”. Science 306(5704), 2068–2072 (2004)

    Article  Google Scholar 

  27. 27.

    Ohno H., Kobayashi T., Kabata R., Endo K., Iwasa T., Yoshimura S., Takeyasu K., Inoue T., Saito H.: “Synthetic RNA-protein complex shaped like an equilateral triangle,”. Nature Nanotechnol. 6, 116–120 (2011)

    Article  Google Scholar 

  28. 28.

    Ayukawa, S., Takinoue, M., Kiga, D., “RTRACS: A Modularized RNADependent RNA Transcription System with High Programmability,” Acc. Chem. Res., in press.

  29. 29.

    Tanaka F. et al.: “Robust and Photocontrollable DNA Capsules Using Azobenzenes,”. Nano Lett. 10(9), 3560–3565 (2010)

    Article  Google Scholar 

  30. 30.

    Yoshimura Y., Fujimoto K.: “Ultrafast Reversible Photo-Cross-Linking Reaction: Toward in Situ DNA Manipulationi,”. Org. Lett. 10(15), 3227–3230 (2008)

    Article  Google Scholar 

  31. 31.

    Matsuura K., Watanabe K., Sakurai K., Matsuzaki T., Kimizuka N.: “Synthetic viral capsid self-assembled from a 24-mer viral peptide fragment,”. Angew. Chem., Int. Ed. 49, 9662–9665 (2010)

    Article  Google Scholar 

  32. 32.

    Kurihara K., Tamura M., Shohda K.-i., Toyota T., Suzuki K., Sugawara T.: “Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA,”. Nature Chem. 3, 775–781 (2011)

    Article  Google Scholar 

  33. 33.

    Kaneda M., Nomura S.-i. M., Ichinose S., Kondo S., Nakahama K.-i., Akiyoshi K., Morita I.: “Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes,”. Biomaterials 30, 3971–3977 (2009)

    Article  Google Scholar 

  34. 34.

    Tamura Y. et al.: “Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin,”. Soft Matter 12(7), 5654–5659 (2011)

    Article  Google Scholar 

Download references


This paper is based on the discussions held in the Molecular Robotics Research Group, SICE. We appreciate all the participants to the discussions. We are also thankful to Prof. Shogo Hamada of Tohoku University for making an illustration, and Prof. Masayuki Endo of Kyoto Univ., Prof. Akinori Kuzuya of Kansai Univ., Prof. Ken Komiya of Tokyo Institute of Technology and Prof. Yannick Rondelez of the University of Tokyo for permitting use of figures. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 24104001-5) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information



Corresponding author

Correspondence to Satoshi Murata.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Murata, S., Konagaya, A., Kobayashi, S. et al. Molecular Robotics: A New Paradigm for Artifacts. New Gener. Comput. 31, 27–45 (2013).

Download citation


  • Molecular Robotics
  • DNA Nanotechnology
  • Robotics
  • Self-organization
  • Bottom-up Approach
  • Nano-devices
  • Grant-in-Aid for ScientificResearch on Innovative Areas