New Generation Computing

, Volume 31, Issue 1, pp 27–45 | Cite as

Molecular Robotics: A New Paradigm for Artifacts

  • Satoshi MurataEmail author
  • Akihiko Konagaya
  • Satoshi Kobayashi
  • Hirohide Saito
  • Masami Hagiya
Open Access
Invited Paper


The rapid progress of molecular nanotechnology has opened the door to molecular robotics, which uses molecules as robot components. In order to promote this new paradigm, the Molecular Robotics Research Group was established in the Systems and Information Division of the Society of Instrument and Control Engineers (SICE) in 2010. The group consists of researchers from various fields including chemistry, biophysics, DNA nanotechnology, systems science and robotics, challenging this emerging new field. Last year, the group proposed a research project focusing on molecular robotics, and it was recently awarded a Grant-in-Aid for Scientific Research on Innovative Areas (FY2012-16), one of the large-scale research projects in Japan, by MEXT (Ministry of Education, Culture, Sports, Science and Technology, JAPAN). Here, we wish to clarify the fundamental concept and research direction of molecular robotics. For this purpose, we present a comprehensive view of molecular robotics based on the discussions held in the Molecular Robotics Research Group.


Molecular Robotics DNA Nanotechnology Robotics Self-organization Bottom-up Approach Nano-devices Grant-in-Aid for ScientificResearch on Innovative Areas 



This paper is based on the discussions held in the Molecular Robotics Research Group, SICE. We appreciate all the participants to the discussions. We are also thankful to Prof. Shogo Hamada of Tohoku University for making an illustration, and Prof. Masayuki Endo of Kyoto Univ., Prof. Akinori Kuzuya of Kansai Univ., Prof. Ken Komiya of Tokyo Institute of Technology and Prof. Yannick Rondelez of the University of Tokyo for permitting use of figures. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 24104001-5) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
  2. 2.
    Schrödinger, E., What is life? Mind and Matter, Cambridge University Press, 1944.Google Scholar
  3. 3.
    Murata, S., Kurokawa, H., Self-organizing Robots, Springer, 2012.Google Scholar
  4. 4.
    Wiener, N., Cybernetics, or Communication and Control in the Animal and the Machine, MIT Press, 1948.Google Scholar
  5. 5.
    Lund et al.: “Molecular robots guided by prescriptive landscapes,”. Nature 465, 206–210 (2010)CrossRefGoogle Scholar
  6. 6.
    Kallenbach N., Ma R., Seeman N.: “An immobile nucleic acid junction constructed from origonucleotides,”. Nature 305, 829–831 (1983)CrossRefGoogle Scholar
  7. 7.
    Winfree E., Liu F., Wenzler L., Seeman N.: “Design and self-assembly of two-dimensional DNA crystals,”. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  8. 8.
    Yan H., Park S. H., Finkelstein G., Reif J., LaBean T.: “DNA-Templated Self-assembly of Protein Arrays and Highly Conductive Nanowires,”. Science 301(5641), 1882–1884 (2003)CrossRefGoogle Scholar
  9. 9.
    He Y., Chen Y., Liu H., Ribbe A., Mao C.: “Self-assembly of Hexagonal DNA Two-Dimensional (2D) Arrays,”. Journal of the American Chemical Society 127(35), 12202–12203 (2005)CrossRefGoogle Scholar
  10. 10.
    Hamada S., Murata S.: “Substrate-Assisted Assembly of Interconnected Single- Duplex DNA Nanostructures,”. Angew. Chem. Int. Ed. 48, 6820–6823 (2009)CrossRefGoogle Scholar
  11. 11.
    Rothemund P.: “Folding DNA to Create Nanoscale Shapes and Patterns,”. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  12. 12.
    Andersen E. et al.: “Self-assembly of a Nanoscale DNA Box with a Controllable Lid,”. Nature 459(7243), 73–76 (2009)CrossRefGoogle Scholar
  13. 13.
    Douglas S., Dietz H., Liedl T., Hogberg B., Graf F., Shih W.: “Self-assembly of DNA into Nanoscale Three-dimensional Shapes,”. Nature 459(7245), 414–418 (2009)CrossRefGoogle Scholar
  14. 14.
    Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y., Komiyama, M., “Nanomechanical DNA Origami as “Single-Molecule Beacons,” Directly Imaged by Atomic Force Microscopy, Nature Commun., 2, 449, 2011.Google Scholar
  15. 15.
    Endo M., Katsuda Y., Hidaka K., Sugiyama H.: “Regulation of DNA Methylation Using Different Tensions of Double Strands Constructed in a Defined DNA Nanostructure,”. J. Am. Chem. Soc. 132, 1592–1597 (2010)CrossRefGoogle Scholar
  16. 16.
    Adleman L.: “Molecular Computation of Solutions to Combinatorial Problems,”. Science 266(5178), 1021–1024 (1994)CrossRefGoogle Scholar
  17. 17.
    Benenson Y., Gil B., Ben-Dor U., Adar R., Shapiro E.: “An Autonomous Molecular Computer for Logical Control of Gene Expression,”. Nature 429(6990), 423–429 (2004)CrossRefGoogle Scholar
  18. 18.
    Sakamoto K., Kiga D., Komiya K., Gouzu H., Yokoyama S., Ikeda S., Sugiyama H., Hagiya M.: “State Transitions by Molecules,”. Biosystems 52(1–3), 81–91 (1999)CrossRefGoogle Scholar
  19. 19.
    Komiya K., Yamamura M., Rose J. A.: “Experimental validation and optimization of signal dependent operation in wiplash PCR,”. Natural Computing 9(1), 207–208 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Takinoue M., Suyama A.: “Hairpin-DNA Memory Using Molecular Addressing,”. Small 2, 1244–1247 (2006)CrossRefGoogle Scholar
  21. 21.
    Stojanovic M., Stefanovic D.: “A Deoxyribozyme-based Molecular Automaton,”. Nature Biotechnology 21(9), 1069–1074 (2003)CrossRefGoogle Scholar
  22. 22.
    Seelig G., Soloveichik D., Zang D., Winfree E.: “Enzyme-Free Nucleic Acid Logic Circuits,”. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  23. 23.
    Zhang D., Turberfield A., Yurke B., Winfree E.: “Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA,”. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  24. 24.
    Qian L., Winfree E.: “Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades,”. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  25. 25.
    Montagnue, K. et al., “Programming an in vitro DNA oscillator using a molecular networking strategy,” Molecular Systems Biology, 7, 466, published online, 2011.Google Scholar
  26. 26.
    Chworos A. et al.: “Building Programmable Jigsaw Puzzle with RNA,”. Science 306(5704), 2068–2072 (2004)CrossRefGoogle Scholar
  27. 27.
    Ohno H., Kobayashi T., Kabata R., Endo K., Iwasa T., Yoshimura S., Takeyasu K., Inoue T., Saito H.: “Synthetic RNA-protein complex shaped like an equilateral triangle,”. Nature Nanotechnol. 6, 116–120 (2011)CrossRefGoogle Scholar
  28. 28.
    Ayukawa, S., Takinoue, M., Kiga, D., “RTRACS: A Modularized RNADependent RNA Transcription System with High Programmability,” Acc. Chem. Res., in press.Google Scholar
  29. 29.
    Tanaka F. et al.: “Robust and Photocontrollable DNA Capsules Using Azobenzenes,”. Nano Lett. 10(9), 3560–3565 (2010)CrossRefGoogle Scholar
  30. 30.
    Yoshimura Y., Fujimoto K.: “Ultrafast Reversible Photo-Cross-Linking Reaction: Toward in Situ DNA Manipulationi,”. Org. Lett. 10(15), 3227–3230 (2008)CrossRefGoogle Scholar
  31. 31.
    Matsuura K., Watanabe K., Sakurai K., Matsuzaki T., Kimizuka N.: “Synthetic viral capsid self-assembled from a 24-mer viral peptide fragment,”. Angew. Chem., Int. Ed. 49, 9662–9665 (2010)CrossRefGoogle Scholar
  32. 32.
    Kurihara K., Tamura M., Shohda K.-i., Toyota T., Suzuki K., Sugawara T.: “Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA,”. Nature Chem. 3, 775–781 (2011)CrossRefGoogle Scholar
  33. 33.
    Kaneda M., Nomura S.-i. M., Ichinose S., Kondo S., Nakahama K.-i., Akiyoshi K., Morita I.: “Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes,”. Biomaterials 30, 3971–3977 (2009)CrossRefGoogle Scholar
  34. 34.
    Tamura Y. et al.: “Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin,”. Soft Matter 12(7), 5654–5659 (2011)CrossRefGoogle Scholar

Copyright information

© Ohmsha and Springer Japan 2013

Authors and Affiliations

  • Satoshi Murata
    • 1
    Email author
  • Akihiko Konagaya
    • 2
  • Satoshi Kobayashi
    • 3
  • Hirohide Saito
    • 4
  • Masami Hagiya
    • 5
  1. 1.Department of Bioengineering and Robotics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Computational Intelligence and Systems ScienceInterdisciplinary Graduate School of Science and Technology,Tokyo Institute of TechnologyMidori, YokohamaJapan
  3. 3.Department of Communication Engineering and Informatics, Graduate School of Informatics and EngineeringUniversity of Electro-CommunicationsChofu, TokyoJapan
  4. 4.The Hakubi Center for Advanced Research & Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
  5. 5.Department of Computer Science, Graduate School of Information Science and TechnologyThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations