New Generation Computing

, Volume 27, Issue 2, pp 129–157 | Cite as

Amoeba-based Chaotic Neurocomputing: Combinatorial Optimization by Coupled Biological Oscillators

  • Masashi Aono
  • Yoshito Hirata
  • Masahiko Hara
  • Kazuyuki Aihara


We demonstrate a neurocomputing system incorporating an amoeboid unicellular organism, the true slime mold Physarum, known to exhibit rich spatiotemporal oscillatory behavior and sophisticated computational capabilities. Introducing optical feedback applied according to a recurrent neural network model, we induce that the amoeba’s photosensitive branches grow or degenerate in a network-patterned chamber in search of an optimal solution to the traveling salesman problem (TSP), where the solution corresponds to the amoeba’s stably relaxed configuration (shape), in which its body area is maximized while the risk of being illuminated is minimized.Our system is capable of reaching the optimal solution of the four-city TSP with a high probability. Moreover, our system can find more than one solution, because the amoeba can coordinate its branches’ oscillatory movements to perform transitional behavior among multiple stable configurations by spontaneously switching between the stabilizing and destabilizing modes. We show that the optimization capability is attributable to the amoeba’s fluctuating oscillatory movements. Applying several surrogate data analyses, we present results suggesting that the amoeba can be characterized as a set of coupled chaotic oscillators.


Multilevel Self-Organization Coupled Oscillators Chaotic Neural Network Chaotic Itinerancy Self-Disciplined Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takamatsu, A., Fujii, T. and Endo, I., “Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum Polycephalum,” Phys. Rev. Lett. 85, pp. 2026-2029, 2000.CrossRefGoogle Scholar
  2. 2.
    Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T. and Endo, I., “Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold,” Phys. Rev. Lett. 87, pp. 078102, 2001.CrossRefGoogle Scholar
  3. 3.
    Takamatsu, A., Tanaka, R. and Fujii, T., “Hidden Symmetry in Chains of Biological Coupled Oscillators,” Phys. Rev. Lett. 92, pp. 228102, 2004.CrossRefGoogle Scholar
  4. 4.
    Takamatsu, A. “Spontaneous Switching Among Multiple Spatio-Temporal Patterns in Three-Oscillator Systems Constructed with Oscillatory Cells of True Slime Mold,” Physica D 223, pp. 180-188, 2006.CrossRefGoogle Scholar
  5. 5.
    Nakagaki, T., Yamada, H. and Toth, A., “Maze-Solving by an Amoeboid Organism,” Nature 407, pp. 470, 2000.CrossRefGoogle Scholar
  6. 6.
    Nakagaki, T., Yamada, H. and Hara, M., “Smart Network Solutions in an Amoeboid Organism,” Biophys. Chem. 107, pp. 1-5, 2004.CrossRefGoogle Scholar
  7. 7.
    Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R. and Showalter, K., “Minimum-Risk Path Finding by an Adaptive Amoebal Network,” Phys. Rev. Lett. 99, pp. 068104, 2007.CrossRefGoogle Scholar
  8. 8.
    Saigusa, T., Tero, A., Nakagaki, T. and Kuramoto, Y., “Amoebae Anticipate Periodic Events,” Phys. Rev. Lett. 100, pp. 018101, 2008.CrossRefGoogle Scholar
  9. 9.
    Aono, M. and Gunji, Y-P. “Beyond Input-Output Computings: Error-Driven Emergence with Parallel Non-Distributed Slime Mold Computer,” BioSystems 71, pp. 257-287, 2003.CrossRefGoogle Scholar
  10. 10.
    Aono, M. and Hara, M. “Dynamic Transition among Memories on Neurocomputer Composed of Amoeboid Cell with Optical Feedback,” in Proceedings of The 2006 International Symposium on Nonlinear Theory and its Applications, pp. 763-766, 2006.Google Scholar
  11. 11.
    Aono, M. and Hara, M., “Amoeba-based Nonequilibrium Neurocomputer Utilizing Fluctuations and Instability,” in UC 2007, LNCS, 4618 (Aki, S. G., et al. eds.), pp. 41-54. Springer-Verlag, Berlin, 2007.Google Scholar
  12. 12.
    Aono, M., Hara, M. and Aihara, K., “Amoeba-based Neurocomputing with Chaotic Dynamics,” Commun. ACM 50, 9, pp. 69-72, 2007.CrossRefGoogle Scholar
  13. 13.
    Aono, M. and Hara, M., “Spontaneous Deadlock Breaking on Amoeba-Based Neurocomputer,” BioSystems 91, pp. 83-93, 2008.CrossRefGoogle Scholar
  14. 14.
    Aono, M., Hara, M., Aihara, K. and Munakata, T, “Amoeba-Based Emergent Computing: Combinatorial Optimization and Autonomous Meta-Problem Solving,” to appear in International Journal of Unconventional Computing, 2009.Google Scholar
  15. 15.
    Tsuda, S., Aono, M. and Gunji, Y-P., “Robust and emergent Physarum logical-computing,” BioSystems 73, pp. 45-55, 2004.CrossRefGoogle Scholar
  16. 16.
    Tsuda, S., Zauner, K. P. and Gunji, Y-P., “Robot Control with Biological Cells,” in Proceedings of Sixth International Workshop on Information Processing in Cells and Tissues, pp. 202-216, 2005.Google Scholar
  17. 17.
    Tero, A., Kobayashi, R. and Nakagaki, T., “Physarum Solver: A Biologically Inspired Method of Road-Network Navigation,” Physica A 363, pp. 115-119, 2006.CrossRefGoogle Scholar
  18. 18.
    Adamatzky, A., “Physarum machine: Implementation of a Kolmogorov-Uspensky machine on a biological substrate,” to appear in Parallel Processing Letters (PPL), 17, 4, pp. 455–467, 2007.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ohl, C. and Stockem, W., “Distribution and Function of Myosin II as a Main Constituent of the Microfilament System in Physarum Polycephalum,” Europ. J. Protistol, 31, pp. 208-222, 1995.Google Scholar
  20. 20.
    Nakamura, A. and Kohama, K., “Calcium Regulation of the Actin-Myosin Interaction of Physarum Polycephalum,” International Review of Cytology, 191, pp. 53-98, 1999.CrossRefGoogle Scholar
  21. 21.
    Ueda, T., Matsumoto, K., Akitaya, T. and Kobatake, Y., “Spatial and Temporal Organization of Intracellular Adenine Nucleotides and Cyclic Nucleotides in Relation to Rhythmic Motility in Physarum Polycephalum,” Exp. Cell Res. 162, 2, pp. 486-494, 1986.CrossRefGoogle Scholar
  22. 22.
    Ueda, T., Mori, Y. and Kobatake, Y., “Patterns in the Distribution of Intracellular ATP Concentration in Relation to Coordination of Amoeboid Cell Behavior in Physarum Polycephalum,” Exp. Cell Res. 169, 1, pp. 191-201, 1987.CrossRefGoogle Scholar
  23. 23.
    Nakagaki, T., Yamada, H. and Ueda, T., “Interaction Between Cell Shape and Contraction Pattern,” Biophys. Chem. 84, pp. 195-204, 2000.CrossRefGoogle Scholar
  24. 24.
    Arbib, M. A. (ed.). The Handbook of Brain Theory and Neural Networks (Second Edition), The MIT Press, Cambridge, Massachusetts, 2003.Google Scholar
  25. 25.
    Hopfield, J. J. and Tank, D. W., “Computing with Neural Circuits: A model,” Science 233, pp. 625-633, 1986.CrossRefGoogle Scholar
  26. 26.
    Holland, J. H., Adaptation in Natural and Artificial Systems (Second Edition), The MIT Press, Cambridge, Massachusetts, 1992.Google Scholar
  27. 27.
    Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999.zbMATHGoogle Scholar
  28. 28.
    Munakata, T.,Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More (Second Edition), Springer-Verlag, Berlin, 2008.Google Scholar
  29. 29.
    Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and co., New York, 1979.Google Scholar
  30. 30.
    Ueda, T., Mori, Y., Nakagaki, T. and Kobatake, Y., “Action Spectra for Superoxide Generation and UV and Visible Light Photoavoidance in Plasmodia of Physarum Polycephalum,” Photochem. Photobiol. 48, pp. 705-709, 1988.CrossRefGoogle Scholar
  31. 31.
    Ott, E., Chaos in Dynamical Systems (2nd edition), Cambridge University Press, Cambridge, 2002.Google Scholar
  32. 32.
    Scheinkman, A. and LeBaron, B., “Nonlinear Dynamics and Stock Returns,” J. Business 62, pp. 311-337, 1989.CrossRefGoogle Scholar
  33. 33.
    Schreiber, T. and Schmitz, A., “Improved Surrogate Data for Nonlinearity Tests,” Phys. Rev. Lett. 77, pp. 635-638, 1996.CrossRefGoogle Scholar
  34. 34.
    Small, M., Yu, D. and Harrison, R. G., “Surrogate Test for Psuedoperiodic Time Series Data,”Phys. Rev. Lett. 87, pp. 188101, 2001.CrossRefGoogle Scholar
  35. 35.
    Luo X., Nakamura T., Small M., “Surrogate Test to Distinguish between Chaotic and Pseudoperiodic Time Series,”. Phys. Rev. E 71: 026230, 2005.CrossRefGoogle Scholar
  36. 36.
    Thiel, M., Romano, M. C., Kurths, J., Rolfs, M. and Kliegl, R., “Twin Surrogates to Test for Complex Synchronisation,” Europhys. Lett. 75 pp. 535-541, 2006.CrossRefGoogle Scholar
  37. 37.
    Kennel, M. B., “Statistical Test for Dynamical Nonstationarity in Observed Time-Series Data,” Phys. Rev. E 56, pp. 316-321, 1997.CrossRefGoogle Scholar
  38. 38.
    Wayland, R., Bromley, D., Pickett, D. and Passamante, A., “Recognizing Determinism in a Time Series,” Phys. Rev. Lett. 70, pp. 580-582, 1993.CrossRefGoogle Scholar
  39. 39.
    Rosetnstein, M. T., Collins, J. J. and De Luca, C. J., “A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets,” Physica D 65, pp. 117-134, 1993.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Hegger, R., Kantz, H. and Schreiber, T., “Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package,” Chaos 9, pp. 413-435, 1999.zbMATHCrossRefGoogle Scholar
  41. 41.
    Ott, E., Grebogi, C. and Yorke, J., “Controlling Chaos,” Phys. Rev. Lett. 64, pp. 1196, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Kaneko, K. and Tsuda, I., Complex Systems: Chaos and Beyond - A Constructive Approach with Applications in Life Sciences, Springer-Verlag, New York, 2001.zbMATHGoogle Scholar
  43. 43.
    Aihara, K., Takabe, T. and Toyoda, M., “Chaotic Neural Networks,” Phys. Lett. A 144, pp. 333-340, 1990.CrossRefMathSciNetGoogle Scholar
  44. 44.
    Hasegawa, M., Ikeguchi, T. and Aihara, K., “Combination of Chaotic Neurodynamics with the 2-opt Algorithm to Solve Traveling Salesman Problems,” Phys. Rev. Lett. 79, pp. 2344-2347, 1997.CrossRefGoogle Scholar
  45. 45.
    Steinbock, O., Toth, A. amd Showalter, K., “Navigating Complex Labyrinths: Optimal Paths from Chemical Waves,” Science, 267, pp. 868-871, 1995.CrossRefGoogle Scholar
  46. 46.
    Motoike, I. and Yoshikawa, K., “Information Operations with an Excitable Field,” Phys. Rev. E, 59, pp. 5354-5360, 1999.CrossRefGoogle Scholar
  47. 47.
    Adamatzky, A., De Lacy Costello, B. and Asai, T. Reaction-Diffusion Computers, Elsevier, Amsterdam, 2005.Google Scholar
  48. 48.
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T. F. Jr., Nagpal, R., Rauch, E., Sussman, G. J. and Weiss, R., “Amorphous Computing,” Commun. ACM 43, 5, pp. 74-82, 2000.CrossRefGoogle Scholar
  49. 49.
    Reif, J. H. and Labean, T. H., “Autonomous Programmable Biomolecular Devices using Self-Assembled DNA Nanostructures,” Commun. ACM 50, 9, pp. 46–53, 2007.CrossRefGoogle Scholar
  50. 50.
    Conrad, M., “On Design Principles for a Molecular Computer,” Commun. ACM 28, 5, pp. 464-480, 1985.CrossRefGoogle Scholar
  51. 51.
    Christodoulides, N., Lederer, F. and Silberberg, Y., “Discritizing Light Behaviour in Linear and Nonlinear Waveguide Lattices,” Nature 424, pp. 817-823, 2003.CrossRefGoogle Scholar

Copyright information

© Ohmsha and Springer Japan jointly hold copyright of the journal. 2009

Authors and Affiliations

  • Masashi Aono
    • 1
  • Yoshito Hirata
    • 2
  • Masahiko Hara
    • 1
  • Kazuyuki Aihara
    • 3
  1. 1.Advanced Science Institute, RIKENSaitamaJapan
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  3. 3.Institute of Industrial Science, ERATO Aihara Complexity Modelling Project, JSTThe University of TokyoTokyoJapan

Personalised recommendations