Skip to main content
Log in

Nosetip bluntness effects on a cone-cylinder-flare at mach 6

  • Research article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A cone-cylinder-flare model with sharp and blunt nosetips was tested at the AFRL Mach-6 Ludwieg Tube at a 0\(^{\circ }\) angle of attack. Surface-pressure fluctuation measurements, high-speed schlieren images, and surface-heat-transfer measurements were taken to study instability and transition as related to an axisymmetric separation bubble downstream of each nosetip. Three nosetip radii were tested, nominally sharp (0.1 mm), 1 mm, and 5 mm. Time-averaged schlieren imagery revealed a smaller bubble for the sharp and 1 mm nosetips than for the 5 mm nosetip. Heat flux measurements revealed streamwise streaks downstream of reattachment that increased in prominence with increasing nosetip bluntness. Surface pressure measurements and high-speed schlieren images include fluctuations below 100 kHz that traverse downstream in the shear layer and the reattached boundary layer for all three nose radii. Wisp-like structures similar to those seen with other blunt geometries were observed traveling downstream in the shear layer over the bubble for the 5 mm nosetip. Nosetip bluntness resulted in delayed transition relative to the sharp tip, with the effect being more significant for the 5 mm nose than for the 1 mm nosetip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Balakumar P, Zhao H, Atkins H (2005) Stability of hypersonic boundary layers over a compression corner. AIAA J 43(4):760–767. https://doi.org/10.2514/1.3479

    Article  Google Scholar 

  • Becker J, Korycinski P (1956) Heat transfer and pressure distribution at a mach number of 6.8 on bodies with conical flares and extensive flow separation. Tech. Rep. RM L56F22, NACA, DTIC citation AD0274584

  • Benay R, Chanetz B, Mangin B et al (2006) Shock wave/transitional boundary-layer interactions in hypersonic flow. AIAA J 44(6):1243–1254. https://doi.org/10.2514/1.10512

    Article  Google Scholar 

  • Benitez E, Jewell J, Schneider S et al (2020) Instability measurements on an axisymmetric separation bubble at mach 6. In: AIAA aviation 2020 forum, AIAA, virtual, paper 2020-3072. https://doi.org/10.2414/6.2020-3072

  • Benitez E, Jewell J, Schneider S (2021a) Propagation of controlled disturbances through an axisymmetric separation bubble at mach 6. In: AIAA aviation 2021 forum, AIAA, virtual, paper 2021-2844. https://doi.org/10.2414/6.2021-2844

  • Benitez E, Jewell J, Schneider S (2021b) Separation bubble variation due to small angles of attack for an axisymmetric model at mach 6. In: AIAA scitech 2021 forum, AIAA, virtual, paper 2021-0245. https://doi.org/10.2414/6.2021-0245

  • Benitez E, Borg M, Hill J et al (2023) Measurements on a blunt cone-cylinder-flare at mach 6. In: AIAA scitech 2023 forum, AIAA, National Harbor, MD, paper 2023-1245. https://doi.org/10.2514/6.2023-1245

  • Benitez E, Borg M, McDaniel Z et al (2023) Instability and transition onset downstream of an axisymmetric separation bubble with sharp and blunt nosetips. In: AIAA aviation 2023 forum, AIAA, San Diego, CA, paper 2023-3702. https://doi.org/10.2514/6.2023-3702

  • Benitez E, Borg M, Paredes P et al (2023) Measurements of an axisymmetric hypersonic shear-layer instability in quiet flow. Phys Rev Fluids 8(8):083–903. https://doi.org/10.1103/PhysRevFluids.8.083903

    Article  Google Scholar 

  • Benitez E, Borg M, Scholten A et al (2023) Instability and transition onset downstream of a laminar separation bubble at mach 6. J Fluid Mech 969:A11. https://doi.org/10.1017/jfm.2023.533

    Article  MathSciNet  Google Scholar 

  • Benitez E, Borg M, Lugrin M et al (2024) Separation and transition on a cone-cylinder-flare: experimental campaigns. In: AIAA SciTech 2024 forum, AIAA, Orlando, pp 2024-0496. https://doi.org/10.2514/6.2024-0496

  • Berger A, Borg M (2023) Study of bluntness-induced elongated structures in hypersonic flow over a 7-degree circular cone. In: AIAA aviation 2023 forum, AIAA, San Diego, CA, paper 2023-3703. https://doi.org/10.2514/6.2023-3703

  • Borg M, Kimmel R (2018) Ground test of transition for HIFiRE-5b at flight-relevant attitudes. J Spacecraft Rockets 6. https://doi.org/10.2514/1.A34163

  • Brès G, Jordan P, Jaunet V et al (2018) Importance of the nozzle-exit boundary-ylayer state in subsonic turbulent jets. J Fluid Mech 851:83–124. https://doi.org/10.1017/jfm.2018.476

    Article  MathSciNet  Google Scholar 

  • Butler C, Laurence S (2020) Interaction of hypersonic boundary-layer instability waves with axisymmetric compression and expansion corners. In: AIAA aviation 2020 forum, AIAA, virtual, paper 2020-3071. https://doi.org/10.2514/6.2020-3071

  • Butler C, Laurence S (2021) Interaction of second-mode disturbances with an incipiently separated compression-corner flow. J Fluid Mech 913. https://doi.org/10.1017/jfm.2021.91

  • Butler C, Laurence S (2022) Transitional hypersonic flow over slender cone/flare geometries. J Fluid Mech 949. https://doi.org/10.1017/jfm.2022.769

  • Cao S, Hao J, Klioutchnikov I et al (2022) Transition to turbulence in hypersonic flow over a compression ramp due to intrinsic instability. J Fluid Mech 941:A8. https://doi.org/10.1017/jfm.2022.277

    Article  MathSciNet  Google Scholar 

  • Chynoweth B, Edelman J, Gray K et al (2017) Measurements in the boeing/AFOSR mach-6 quiet tunnel on hypersonic boundary-layer transition. In: 47th AIAA fluid dynamics conference, AIAA, Denver, CO, paper 2017-3632. https://doi.org/10.2514/6.2017-3632

  • Dovgal A, Kozlov V, Michalke A (1994) Laminar boundary layer separation: instability and associated phenomena. Prog Aerospace Sci 30(1):61–94. https://doi.org/10.1016/0376-0421(94)90003-5

    Article  Google Scholar 

  • Dwivedi A, Nichols J, Jovanovic M et al (2017) Optimal spatial growth of streaks in oblique shock/boundary layer interaction. In: 8th AIAA theoretical fluid mechanics conference, AIAA, Denver, CO, paper 2017-4163. https://doi.org/10.2514/6.2017-4163

  • Dwivedi A, Gs S, Candler G, (2018) Input-output analysis of shock boundary layer interaction. In: Fluid dynamics conference AIAA, Atlanta, GA, paper 2018-3220. https://doi.org/10.2514/6.2018-3220

  • Dwivedi A, Broslawski C, Candler G et al (2020) Three-dimensionality in shock/boundary layer interactions: a numerical and experimental investigation. In: AIAA aviation 2020 forum, AIAA, Virtual, paper 2020-3011. https://doi.org/10.2514/6.2020-3011

  • Dwivedi A, Sidharth G, Jovanovic M (2022) Oblique transition in hypersonic double-wedge flow. J Fluid Mech 948. https://doi.org/10.1017/jfm.2022.697

  • Edelman J (2019) Nonlinear growth and breakdown of the hypersonic crossflow instability. PhD thesis, Purdue University, West Lafayette, Indiana. https://doi.org/10.25394/PGS.9159689.v1

  • Edelman J, Chynoweth B, McKiernan G et al (2016) Instability measurements in the boeing/AFOSR mach-6 quiet tunnel. In: 46th AIAA fluid dynamics conference, AIAA, Washington, DC, paper 2016-3343. https://doi.org/10.2514/6.2016-3343

  • Esquieu S, Benitez E, Schneider S et al (2019) Flow and stability analysis of a hypersonic boundary-layer over an axisymmetric cone-cylinder-flare configuration. In: AIAA SciTech 2019 forum, AIAA, San Diego, CA, paper 2019-2115. https://doi.org/10.2514/6.2019-2115

  • Esquieu S, Schneider S, Benitez E et al (2023) Design of a cone-cylinder-flare configuration for hypersonic boundary-layer stability analyses and measurements with attached and separated flows. In: AERO 2023-the 3AF international conference on applied aerodynamics, Bordeaux, France

  • Estruch-Samper D, Ganapathisubramani B, Vanstone L et al (2012) Axisymmetric flare-induced separation of high-speed transitional boundary layers. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA, Nashville, TN, paper 2012-0067. https://doi.org/10.2514/6.2012-67

  • Ginoux J (1965) Investigation of flow separation over ramps at M\(_{\infty }\)=3. Tech. Rep. AEDC-TR-65-273, Von Karman Gas Dynamics Facility, Arnold Engineering Development Center

  • Grossir G, Pinna F, Bonucci G et al (2014) Hypersonic boundary layer transition on a 7 degree half-angle cone at mach 10. In: 7th AIAA theoretical fluid mechanics conference, AIAA, Atlanta, GA, paper 2014-2779. https://doi.org/10.2514/6.2014-2779

  • Hao J, Cao S, Guo P et al (2023) Response of hypersonic compression corner flow to upstream disturbances. J Fluid Mech 964:A25. https://doi.org/10.1017/jfm.2023.384

    Article  MathSciNet  Google Scholar 

  • Hill J (2023) IR Calibrations, unpublished internal communication

  • Hill J, Oddo R, Komives J et al (2022) Experimental measurements of hypersonic instabilities over ogive-cylinders at mach 6. AIAA J 60(1882):1–17. https://doi.org/10.2514/1.j061019

    Article  Google Scholar 

  • Hill J, Borg M, Benitez E et al (2023) Implementation of self-aligned focusing schlieren for hypersonic boundary layer measurements. In: AIAA SciTech 2023 forum, AIAA, National Harbor, MD, paper 2023-2438. https://doi.org/10.2514/6.2023-2438

  • Hill J, Borg M, Tufts M et al (2023) Leading-edge curvature influence on hypersonic boundary layer transition. In: AIAA SciTech 2023 Forum, AIAA, National Harbor, MD, paper 2023-0098. https://doi.org/10.2514/6.2023-0098

  • Huang R, Cheng J, Chen J et al (2022) Experimental study of bluntness effects on hypersonic boundary-layer transition over a slender cone using surface mounted pressure sensors. Adv Aerodyn 4(35). https://doi.org/10.1186/s42774-022-00127-9

  • Kennedy R, Jagde E, Laurence S et al (2019) Visualizations of hypersonic boundary-layer transition on a variable bluntness cone. In: AIAA aviation 2019 forum, AIAA, Dallas, TX, paper 2019-3079. https://doi.org/10.2514/6.2019-3079

  • Kimmel R, Borg M, Jewell J et al (2017) AFRL Ludwieg tube initial performance. In: 55th AIAA aerospace sciences meeting, AIAA, Grapevine, TX, paper 2017-0102. https://doi.org/10.2514/6.2017-0102

  • Kudryavtsev A, Khotyanovsky D (2005) Numerical investigation of high speed free shear flow instability and mach wave radiation. Int J Aeroacoust 4(3):325–343. https://doi.org/10.1260/1475472054771394

    Article  Google Scholar 

  • Leinemann M, Radespiel R, Muñoz F et al (2019) Boundary layer transition on a generic model of control flaps in hypersonic flow. In: AIAA SciTech 2019 Forum, AIAA, San Diego, CA, paper 2019-1908. https://doi.org/10.2514/6.2019-1908

  • Li F, Choudhari M, Paredes P et al (2022) Nonlinear evolution of instabilities in a laminar separation bubble at hypersonic mach number. In: AIAA Aviation 2022 Forum, AIAA, Chicago, IL, paper 2022–3855. https://doi.org/10.2514/6.2022-3855

  • Lugrin M, Beneddine S, Leclercq C et al (2021) Transition scenario in hypersonic axisymmetrical compression ramp flow. J Fluid Mech 907:A6. https://doi.org/10.1017/jfm.2020.833

    Article  MathSciNet  Google Scholar 

  • Lugrin M, Nicolas F, Severac N et al (2022) Transitional shockwave/boundary layer interaction experiments in the R2Ch blowdown wind tunnel. Exp Fluids 63(46). https://doi.org/10.1017/jfm.2020.833

  • Lumley J (1970) Stochastic tools in turbulence. Academic Press, New York

    Google Scholar 

  • McKiernan G (2020) Instability of the shear layer on a sliced cone with finite span compression ramps at mach 6. PhD thesis, Purdue University, West Lafayette, Indiana. https://doi.org/10.25394/PGS.12235013.v1

  • McKiernan G, Schneider S (2021) Instability and transition on a cone with a slice and ramp at mach 6. In: AIAA SciTech 2021 Forum, AIAA, Virtual, paper 2021-0249. https://doi.org/10.2514/6.2021-0249

  • Nekkanti A, Schmidt O (2021) Frequency-time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD. J Fluid Mech 847:A26. https://doi.org/10.1017/jfm.2021.681

    Article  Google Scholar 

  • Oberkampf W, Aeschliman D (1992) Joint computational/experimental aerodynamics research on a hypersonic vehicle. Part I: experimental results. AIAA J 30(8):2000–2009. https://doi.org/10.2514/3.11172

    Article  Google Scholar 

  • Paredes P, Scholten A, Choudhari M et al (2021) NATO STO AVT-346

  • Paredes P, Scholten A, Choudhari M et al (2022) Boundary-layer instabilities over a cone-cylinder-flare model at mach 6. AIAA J 60(10). https://doi.org/10.2514/1.J061829

  • Roghelia A, Olivier H, Egorov I et al (2017) Experimental investigation of Görtler vortices in hypersonic ramp flows. Exp Fluids 58(139). https://doi.org/10.1007/s00348-017-2422-y

  • Running C, Juliano T, Borg M et al (2020) Characterization of post-shock thermal striations on a cone/flare. AIAA J 58(5):2352–2358. https://doi.org/10.2514/1.J059095

    Article  Google Scholar 

  • Sandham N, Reynolds W (1991) Three-dimensional simulations of large eddies in the compressible mixing layer. J Fluid Mech 224:133–158. https://doi.org/10.1017/S0022112091001684

    Article  Google Scholar 

  • Schaefer J, Ferguson H (1962) Investigation of separation and associated heat transfer and pressure distribution on cone-cylinder-flare configurations at mach five. ARS J 32(5):762–770. https://doi.org/10.2514/8.6146

    Article  Google Scholar 

  • Schmidt O (2022) Spectral proper orthogonal decomposition using multitaper estimates. Theor Comput Fluid Dyn 36:741–754. https://doi.org/10.1007/s00162-022-00626-x

    Article  MathSciNet  Google Scholar 

  • Schmidt O, Towne A, Rigas G et al (2018) Spectral analysis of jet turbulence. J Fluid Mech 855:821–867. https://doi.org/10.1017/jfm.2018.675

    Article  MathSciNet  Google Scholar 

  • Schneider S (2008) Development of hypersonic quiet tunnels. J Spacecraft Rockets 45(4):641–664. https://doi.org/10.2514/1.34489

    Article  Google Scholar 

  • Towne A, Schmidt O, Colonius T (2018) Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J Fluid Mech 847:821–867. https://doi.org/10.1017/jfm.2018.283

    Article  MathSciNet  Google Scholar 

  • Vandomme L, Chanetz B, Benay R et al (2003) Shock wave transitional boundary layer interaction in hypersonic flow. In: 12th AIAA international space planes and hypersonic systems and technologies, AIAA, Norfolk, VA, paper 2003-6966. https://doi.org/10.2514/6.2003-6966

  • Vanstone L, Clemens N (2019) Unsteadiness mechanisms of a swept compression-ramp shock/boundary layer interaction at mach 2. In: AIAA SciTech 2019 Forum, AIAA, San Diego, CA, paper 2019-0095. https://doi.org/10.2514/6.2019-0095

  • Vanstone L, Estruch-Samper D, Hillier R et al (2013) Shock induced separation in transitional hypersonic boundary Layers. In: 43rd Fluid dynamics conference, AIAA, San Diego, CA, paper 2013-2736. https://doi.org/10.2514/6.2013-2736

  • Vanstone L, Estruch-Samper D, Hillier R et al (2017) Establishment times of hypersonic shock-wave/boundary-layer interactions in intermittent facilities. AIAA J 55(9):2875–2887. https://doi.org/10.2514/1.J055575

    Article  Google Scholar 

  • Wagner L, Schneider S, Jewell J (2022) Streamwise vortices from controlled roughnesses on a cone-cylinder-flare at mach 6. In: AIAA SciTech 2022 Forum, AIAA, San Diego, CA, paper 2022-1671. https://doi.org/10.2514/6.2022-1671

  • Zaccara M (2018) Infrared thermography data reduction for heat transfer measurements in the boeing/afosr mach-6 quiet tunnel. Master’s thesis, Università degli Studi di Napoli Federico II, Napoli, Italia

Download references

Acknowledgements

The authors would like to thank Dr. Alexandre Berger and Dr. Carson Running for their great discussions related to the work. Thanks also to Lt. Trevor Toros for assistance with the wind tunnel testing.

Funding

This work was partially sponsored by the Air Force Research Laboratory, High-Speed Systems Division (AFRL/RQH) at Wright-Patterson Air Force Base (WPAFB), under Contract No. FA8650-23-F-2405.

Author information

Authors and Affiliations

Authors

Contributions

EKB conducted the experimental campaign and wrote the main manuscript. JLH set up the schlieren diagnostic and assisted with data processing. MPB provided guidance in the interpretation of data, as well as extensive edits and suggestions to improve the manuscript. All authors reviewed the manuscript. All authors reviewed the referee comments and provided feedback for reply. EKB implemented the agreed-upon changes to the manuscript.

Corresponding author

Correspondence to Elizabeth K. Benitez.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Ethical approval

This declaration is not applicable to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benitez, E.K., Borg, M.P. & Hill, J.L. Nosetip bluntness effects on a cone-cylinder-flare at mach 6. Exp Fluids 65, 72 (2024). https://doi.org/10.1007/s00348-024-03808-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-024-03808-x

Navigation